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Preface

In olden times (well, before 1975) number theory had the reputation of being the purest
part of mathematics. It was studied for its long and rich history, its wealth of easily
accessible and fascinating questions, and its intellectual appeal. But, in the past few
years, people have looked at number theory in a new way. Today, people study number
theory both for the traditional reasons and for the compelling reason that number theory
has become essential for cryptography. The first edition of this book was the first text to
integrate the modemn applications of elementary number theory with traditional topics.
This fifth edition builds on the basic approach of the original text. No other number theory
text presents elementary number theory and its applications in as thoughtful a fashion as
this book does. Instructors will be pleasantly surprised to see how modern applications
can be seamlessly woven into their number theory course when they use this text.

This book is designed as a text for an undergraduate number theory course at any
level. No formal prerequisites are needed for most of the material, other than some level of
mathematical maturity. This book is also designed to be a useful supplement for computer
science courses and as a number theory primer for people interested in learning about
new developments in number theory and cryptography.,

This fifth edition has been designed to preserve the strengths of previous editions
while providing substantial enhancements and improvements. Instructors familiar with
previous editions will be comfortable with this new edition. Those examining this book
for the first time will see an up-to-date text, which integrates gems of number theory
dating back thousands of years with developments less than ten years old. Those familiar
with previous editions will find that this book has become more flexible, easier to teach
from, and more interesting and competling. They will also find that additional emphasis
has also been placed on the historical context of results and on the experimental side of
number theory.
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Changes in the Fifth Edition

This new edition incorporates many improvements made at the request of users and
reviewers. The new edition should be easier to teach from, easier to read, and more
interesting and informative. This edition more effectively conveys both the beauty and
the utility of number theory. Noteworthy changes include:

s More flexible organization

The first section of the fourth edition has been divided into two shorfer sections. The
first covers types of numbers and sequences and introduces diophantine approximation.
The second covers sums and products. Instructors can skip most of the material in these
two sections if desired, although many will want to cover the material on diophantine
approximation. Section 3.1 of the fourth edition has also been divided into two sections.
The first of these sections introduces primes, establishes that there are infinitely many
primes, and begins the discussion of how primes are found. The second section dis-
cusses the distribution of primes and introduces the prime number theorem and many
conjectures about prime numbers.

» Expanded coverage of cryptography

Cryptanalysis of Vigénere ciphers has been added with the introduction of the Kasiski
test and the index of coincidence. Recent developments in cryptography are mentioned,
including the AES encryption standard. Attacks that have been devised on implemen-
tations on RSA are now described. One such attack is now developed in Chapter 12
using ideas from diophantine approximation using continued fractions. The weakness in
a proposed zero-knowledge proof method is now included in an exercise.

» Up-to-date discoveries

The latest discoveries in number theory are reflected in the text, including a number of
theoretical discoveries and discussions concerning the polynomial time algorithm for
proving an integer in prime and the resolution of the Catalan conjecture. Computational
discoveries, such as three new Mersenne primes, have been added. The Web site for
the book will highlight the latest news in number theory and links will be provided that
announce discoveries made subsequent to the publication of this book.

» New and expanded topic coverage

Dirichlet’s theorem on approximation of real aumbers by rational numbers has been
added, introducing the subject of diophantine approximation to the first section of the
text. A proof using the pigeonhole principle is provided. Many important topics whose
full treatment is beyond the scope of an elementary number theory text are now discussed,
the goal is to give the student a fuller appreciation of number theory. In a similar vein,
the coverage of diophantine equations has been expanded. This edition includes brief
discussions of Beal’s conjecture, the Catalan conjecture and its recent resolution, and
the Permat-Catalan conjecture, The abc conjecture is also discussed, and how it can be
used to prove results on diophantine equations is illustrated.
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A new chapter on the Gaussian integers has been added. This chapter introduces
Gaussian primes, the greatest common divisor of Gaussian integers, the Euclidean
algorithm for Gaussian integers, and the unique factorization of Gaussian integers into
Gaussian primes. This new chapter also explains how Gaussian integers can be used to
find the number of ways to express a positive integer into the sum of two squares.

» Improved examples and proofs

Euclid’s proof that there are infinitely many primes is now given in the text. A large
number of other proofs of the infinitude of primes can be found in the exercises. Many
proofs have been improved, either by simplification or by additional explanation.

« Enhanced exercise sefs

This book has long been noted for its exceptional exercises; in this edition the exercises
are even better, All exercises in the text have been reviewed and solved; exercises from
the fourth edition found to be ambiguous or lacking assumptions have been clarified.

Several hundred new exercises have been added. Additional exercises involving
Fibonacci identities have been inserted. New exercises also outline different proofs
that there are infinitely many primes. There are many new exercises on cryptography,
including many relating to the Vigénere cipher and the RSA cryptosystem. The newest
proof of the law of quadratic reciprocity is outlined in an exercise. More exercises
on nonlinear diophantine equations have been added, including exercises on Bachet's
equation, Markov’s equation, and congruent numbers.

» Expanded historical context and biographies

The history and status of the Riemann hypothesis are now covered. Skewes’ constant,
one of the largest numbers arising in a proof, is iniroduced. Also added is an account
of the discovery by Thomas Nicely of the famous division flaw in the Pentium chip,
found because two computations involving twin primes did not agree. This edition
introduces many new biographies, including those of Bertrand, Farey, Waring, Bachet,
Kronecker, Levi ben Gerson, and Catalan, Photographs have been also been added to
many biographies.

s Enhanced ancillaries and enhanced support for Maple® and Mathematica®

The Student’s Selutions Manual and the Instructor’s Manual have been enhanced. They
both now contain a comprehensive guide explaining how to use Maple for computations
in number theory. Suggested syllabi for different courses are now contained in the In-
structor’s Manual, The Instructor’s Manual and the Web site now both contain migration
guides for the exercises showing where exercises in the fourth edition can be found in
the fifth edition, and conversely, where exercises in the fifih edition were located in the
fourth edition, if they were included in this previous edition,

Commands for carrying out computations with the Gaussian integers have been
added to the appendix that describes number theory commands in Maple and Mathe-
matica,



viit

Preface

« Extra focus on accuracy

This edition benefits from extra resources devoted to ensure the accuracy of the text,
as well as the exercises and their answers and solutions. Three accuracy checkers have
spent long hours making sure that this book is as error-free as possible.

+ Expanded Web site

The Web site for this text has been expanded and enhanced in several key ways. “Number
Theory News” is a new feature highlighting recent discoveries in number theory. The
extensive list of number theory Web sites keyed to the text has been expanded and all
links have been updated. These links will be periodically updated during the life of this
edition. The Web site now also supports an extensive collection of number theory and
cryptography applets which can be used for computations and exploration, as well as
a tutorial on PART/GP, a computational system for fast computation in number theory
upon which these applets are built. A collection of suggested group or individual student
projects can also be found on the Web site.

Features
A Development of Classical Number Theory

The core of this book presents classical elementary number theory in a comprehensive
and compelling manner. The historical context and importance of key results are noted.

- The basic material on each topic is'developed carefully, followed by more sophisticated e

resulis on the same topic,

Applications

A key strength of this book is how applications of number theory are covered. Once
the requisite theory has been developed, applications are woven into the text in a
flexible way. These applications are designed to motivate the coverage of the theory
and illustrate the usefulness of different aspects of elementary number theory. Extensive
coverage is devoted to applications of number theory to cryptography. Classical ciphers,
block and stream ciphers, public key cryptosystems, and cryptographic protocols are all
covered. Other applications to computer science include fast multiplication of integers,
pseudorandom numbers, and check digits. Applications to many other areas, such as
scheduling, telephony, entormology, and zoology can also be found in the text.

Unifying Themes

Many concepts from elementary number theory are used in primality testing and fac-
toring. Furthermore, primality testing and factoring play a key role in applications of
mumber theory to cryptography. As such, these topics are used as unifying themes and
are returned to repeatedly, Almost every chapter includes material on these topics.
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Accessibility

This book has been designed with a minimum of prerequisites. The book is almost
entirely self-contained, with only a knowledge of what is generally known as “college
algebra” required. There are several places where knowledge of some concepts from
calculus is needed (such as in the discussions of the distribution of primes and big-
O notation). Concepts from discrete mathematics and linear algebra are needed in a
few places. All material that depends on topics more advanced than college algebra is
explicitly noted and is optional.

Accuracy

Great effort has been made to ensure the accuracy of this edition. Input from many users
of the fourth edition, reviewers, and proofreaders has helped achieve this goal.

Extensive Exercise Sets

The best (and maybe the only) way to learn mathematics is by doing exercises. This
text contains an extremely extensive and diverse collection of exercises. Many routine
exercises are included to develop basic skills, with care taken so that both odd-numbered
and even-numbered exercises of this type are included. A large number of intermediate-
level exercises help students put several concepts together to form new results. Many
other exercises and blocks of exercises are designed to develop new concepts. Challeng-

i cxercises are in amplé supply and aré marked with on Star(:k)mdlcatmga diffioaly

exercise and two stars (%) indicating an extremely difficult exercise. There are some
exercises that contain results used later in the text; these are marked with a pointing-hand
symbol (B5), These exercises should be assigned by instructors whenever possible.

An extensive collection of computer projects is also provided. Each section includes
computations and explorations designed to be done with a computational program such as
Maple or Mathematica, or using programs written by instructors and/or students, There
are some routine exercises of this sort that students should do to learn how to apply
basic commands from Maple or Mathematica (as described in Appendix D), as well as
more open-ended questions designed for experimentation and creativity. Each section
also includes a set of programming projects designed to be done by students using a
programming language of their choice, such as the programming languages included
with Maple and Mathematica, or another programming language of their choice,

Exercise Answers

The answers to all odd-numbered exercises are provided at the end of the text. More
complete solutions to these excrcises can be found in the Student’s Solutions Manual
that accompanies this text. All solutions have been carefully checked and rechecked to
€nsure accuracy.
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Discovery via Empirical Evidence

In many places in the text numerical evidence is examined to help motivate key results.
This gives an opportunity to students to come up with a conjecture much as the people
who originally developed many of the results of number theory did.

Extensive Examples

This book includes examples that illustrate each important concept. These examples are
designed to illusirate the definitions, algorithms, and proofs in the text. They are also
designed to help students work many of the exercises found at the end of sections.

Carefully Motivated Proofs

Many proofs in this book are motivated with examples that precede the formal proof and
illustrate the key ideas of the proof. The proofs themselves are presented in a careful,
rgorous, and fully explained manner, The proofs are designed so that smdents can
understand each step and the flow of logic, Numerical examples illustrating the steps
of the proof are often provided following the formal proof as well.

Algorithmic Reasoning

The algorithmic aspects of elementary number theory are thoroughly covered in this

Among the algorithms described in this book are those for computing greatest common
divisors in many different ways and for primality testing and factoring. The coverage of
the complexity of algorithms has been included so that instructors can choose whether
they want to include this material in their course.

Biographies and Historical Notes

More than 60 biographies of contributors to number theory are included in this edition.
Contributors included lived in ancient times, the Middle Ages, the sixteenth through
eighteenth centuries, the nineteenth century, and the twentieth century, and lived in the
East and in the West. These biographies are designed to give students an appreciation of
contributors as unique individuals who often led (or are leading) interesting lives.

Open Questions

Many open questions in number theory are described throughout the book. Some are
described in the text itself and others are found in exercise sets. These questions show
that the subject of number theory is a work in progress. Readers should be aware that
attempting to solve such problems can often be time-consuming and futile. However, it
would be surprising if some of these questions were not settled in the next few years.
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Up-to-Date Content

The latest discoveries-in number theory are included in this book. The current status
of many open questions is described, as are new theoretical results. Discoveries of new
primes and factorizations made as late as September 2004 are included with the first
printing of this edition. These discoveries will help readers understand that number theory
is an extremely active area of study. They may even see how they may participate in the
search for new primes.

Bibliography

An extensive bibliography is provided for this book. This bibliography lists key printed
number theory resources, inchuding both books and papers. Many useful number texts
are listed, as are books dealing with the history of number theory and particular aspects
of the subject. Many original sources are included, as is material covering cryptography.

Maple and Mathematica Support

An appendix has been provided which lists the commands in both Maple and Math-
ematica for carrying out computations in number theory. These commands are listed
according to the chapter of the text relevant to these commands,

Web Resources

The Web site for this book includes a Web guide to number theory that is keyed to
 this text, as well as an extensive collection of other resources. To access this site go to
wuw.awlonline.com/rosen. For convenience, the most important number theory Web
sites are highlighted in Appendix D,

Tables

A set of five tables is included to help students with their computations and experi-
mentation, Looking at these tables can help siudents search for patterns and formulate
conjectures. The use of a computational software package, such as Maple or Markemai-
ica is recommended when these tables are insufficient.

List of Symbols

A list of symbols used in the text and where they are defined is included on the inside
front cover of this book.

Ancillaries
Student’s Solutions Manual (ISBN 0-321-26840-7)

The Student’s Solutions Manual contains worked solutions to all the odd-numbered
exercises in the text and other helpful material, including some tips on using Maple and
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Mathematica to explore number theory. A tutorial for using Maple to do computations
in number theory is provided.

Instructor’s Manual (ISBN 0-321-26842-3)

The Instructor’s Manual contains solutions to all exercises in the text. It also confains
advice on planning which sections to cover, Sample tests are also provided.

Web Site

The Web site for this book contains a guide providing annotated links to a large number of
Web sites relevant to number theory. These sites are keyed to the page in the book where
relevant material is discussed. These locations are marked with an icon (%) in the text,
The Web site also contains a section highlighting the latest discoveries in number theory.
An extensive collection of number theory and cryptography applets is also provided.

How to Use this Book

This text is designed to be extremely flexible. The essential, core material for a rumber
theory course can be found in Section 1.4, which covers divisibility; Chapter 3, which
covers primes, factoring, and greatest common divisors; Sections 4.1-4.3, which cover
congruences; and Chapter 6, which covers important congruences including Fermat’s
little theorem. Instructors can design their own courses by supplementing core material

-with other content of their own choice. To help instructors decide which sections to cover, ..

a brief description of the different parts of the book follows.

The material in Sections 1.1-1.4 is optional. Section 1.1 introduces different types of
numbers, integer sequences, and countability, This section also introduces the notion of
diophantine approximation. Section 1.2 reviews sums and products for students who need
a review of these topics. Section 1.3 introduces mathematical induction, which students
may already have studied elsewhere. (Material on integer axioms and the binomial
theorem can be found in the appendices.) Section 1.4 introduces the Fibonacci numbers,
a favorite topic of many instructors; students may have studied these numbers in a course
in discrete mathematics. As stated previously, Section 1.5 presenis core material on
divisibility of integers and should be covered.

Chapter 2 is optional; it covers base b representations of integers, integer arithmetic,
and the complexity of integer operations. Big-O notation is introduced in Section 2.3.

. This is important for students who have not seen this notation elsewhere, especially when

the instructor wants to stress the complexity of computations in number theory.

As previously stated, Chapter 3 and Sections 4.1-4.3 present core material. Section
4.4, which deals with solving polynomial congruences modulo powers of primes is
optional; it is important to development of p-adic number theory. Section 4.5 requires
some background in linear algebra; the material in this section is used in Section 8.2;
these sections may be omitted if desired. Section 4.6 introduces a particular factorization
method (the Pollard rho method) and can be omitted.
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Chapter 5 is optional, Instructors can pick and choose from a variety of applica-
tions of number theory. Section 5.1 introduces divisibility tests; Section 5.2 covers the
perpetual calendar; Section 5.3 discusses scheduling round-robin tournaments; Section
5.4 shows how congruences can be used in hashing funclions; and Section 5.5 describes
how check digits are found and used. As mentioned previously, Chapter 6 presents core
material.

Chapter 7 covers multiplicative functions, Section 7.1 should be covered; it intro-
duces the basic concept of a multiplicative function and studies the Euler phi-function.
The sum and number of divisors functions are studied in Section 7.2; this section is rec-
ommended for all instructors. All instructors will probably want to cover Section 7.3,
which introduces the concept of a perfect number and describes the search for Mersenne
primes.

Chapter 8 covers the applications of number theory to cryptology. It is highly rec-
ommended since this is such an important topic and one that students find extremely
interesting. Section 8.1 introduces the basic terminology of this subject and some classi-
cal character ciphers; instructors who plan to cover cryptography in their course should
be sure to include this section. Section 8.2 introduces block and stream ciphers, two
important families of ciphers, and provides examples of these types of cipher that are
based on number theory. Section 8.3 covers a particular type of block cipher based on
modular exponentiation. Section 8.4 should be covered by all instructors. Tt introduces
the fundamental concept of public key cryptography and illustrates this with the RSA
cryptosystem. Section 8.5 discusses knapsack ciphers; it is an optional section. Sec-
tion 8.6 provides an introduction to cryptographic protocols and is highly recommended
for instructors interested in medern cryptographic applications. (Additional topics from
cryptography are covered in Chapters 9, 10, and 11.)

Chapter 9 deals with the concept of the order of an integer, primitive roots, and index
arithmetic. Sections 9.1-9.4 should be covered if possible. Section 9.5, which discusses
how the concepts of this chapter are used in primality testing presents partial converses
of Fermat’s little theorem. Section 9.6, on universal exponents, is optional; it contains
some interesting results about Carmichael numbers.

Chapter 10 introduces some applications that use the material from Chapter 9.
The three sections that cover pseudorandom numbers, the ElGamal cryptosystem, and
schemes for splicing telephone cable are optional. Instructors stressing cryptographic
applications will especially want to cover Section 10.2.

Sections 11.1 and 11.2, which cover quadratic residues and quadratic reciprocity,
a key result of number theory, should be covered whenever possible. Sections 11.3 and
11.4 deal with Jacobi symbols and Euler pseudoprimes and are optional. Section 11,5
covers zero-knowledge proofs; instructors interested in eryptography will want to cover
this section if possible.

Section 12.1, which covers decimal fractions, will be covered by many instructors.
Instructors with an interest in continued fractions will want to cover Sections 12.2-12.4,
which establish the basic results about finite and periodic continued fractions. Section
12.5, which deals with factoring using continued fractions, is optional,
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Most instructors will want to cover Sections 13.1 and 13.2, which deal with Pythag-
orean triples and Fermat’s last theorem, respectively. Section 13.3, which covers sums
of squares, and Section 13.4, which discusses the solution of Pell’s equation and which
uses continued fractions, are optional sections.

Chapter 14 is an optional chapter covering the Gaussian integers. Many of their
properties analogous to those of the integers are developed in this chapter. In particular,
Gaussian primes are introduced and the unique factorization of Gaussian integers is
established. Finally, the number of ways a positive integer can be expressed as the sum
of two squares is found using Gaussian integers.

The following figure showing the dependency of chapters will help instructors
plan their course. Suggested syllabi for courses with different emphases are provided
in the Instructor’s Resource Guide. Although Chapter 2 may be omitted if desired, it
does explain the big-O notation used throughout the text to describe the complexity of
algorithms. Chapter 12 only depends on Chapter 1 as shown, except for Theorem 12.4,
which depends on material from Chapter 9. Section 13.4 is the only part of Chapter 13
that depends on Chapter 12. Chapter 11 can be covered without covering Chapter 9 if
the optional comments involving primitive roots in Section 9.1 are omitted, Section 14.3
should also be covered in conjunction with Section 13.3.
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<\X/hat Is Number Theory?

There is a buzz about number theory: Thousands of people work on communal number
theory problems over the Internet . . . the solution of a famous problem in number
theory is reported on the PBS television series NOVA . . . people study number theory
to understand systems for making messages secret . . . What is this subject, and why are
so many people interested in it today?

Number theory is the branch of mathematics that studies the properties of, and the
relationships between, particular types of numbers. Of the sets of numbers studied in
number theory, the most important is the set of positive integers. More specifically,
the primes, those positive integers with no positive proper factors other than 1, are
of special importance. A key result of number theory shows that the primes are the
multiplicative building blocks of the positive integers. This result, called the fundamental
theorem of arithmetic, tells us that every positive integer can be uniquely written as
the product of primes in nondecreasing order. Interest in prime numbers goes back
at least 2500 years, to the studies of ancient Greek mathematicians. Perhaps the first
question about primes that comes to mind is whether there are infinitely many. In
The Elements, the ancient Greek mathematician Euclid provided a proof that there are
infinitely many primes. Interest in primes was rekindled in the seventeenth and eighteenth
centuries, when mathematicians such as Pierre de Fermat and Leonhard Euler proved
many important results, and conjectured approaches for generating primes. The study of
primes progressed substantially in the nineteenth century; resulis included the infinitude
of primes in arithmetic progressions, and sharp estimates for the number of primes not
exceeding a positive number x. The twenticth century has seen the development of many
powerful techniques for the study of primes, but even with these powerful techniques,
many questions remain unresolved. An example of a notorious unsolved question is
whether there are infinitely many twin primes, which are primes that differ by 2. New
results will certainly follow in the coming decades, as researchers continue working on
the many open questions involving primes.



What Is Number Theory?

The development of modern number theory was made possible by the German
mathematician Carl Friedrich Gauss, one of the greatest mathematicians in history, who
developed the language of congruences in the early nineteenth century. We say that two
integers a and b are congruent modulo m, where m is a positive integer, if m divides
a — b. This language makes it easy to work with divisibility relationships in much the
same way that we work with equations. Gauss developed many important concepts in
number theory, for example, he proved one of its most subtle and beautiful results, the law
of quadratic reciprocity. This law relates whether a prime p is a perfect square modulo
a second prime ¢ to whether g is a perfect square modulo p. Gauss developed many
different proofs of this law, some of which have led to whole new areas of number theory.

Distinguishing primes from composite integers is a key problem of number theory.
Work in this area has led to the development of an arsenal of primality tests. The simplest
primality test is simply checking whether a positive integer is divisible by each prime
not exceeding its square root. Unfortunately, this test is inefficient for extremely large
positive integers. In the nineteenth century, Pierre de Fermat showed that p divides 27 — 2
whenever p is prime. Some mathematicians thought that the converse also was true (that
is, that if n divides 2" — 2, then n must be prime). However, it is not; by the early
nineteenth century, composite infegers #, such as 341, were known for which n divides
2% — 2. Such integers are called pseudoprimes. Though pseudoprimes exist, primality
tests based on the fact that most composite integers are not pseudoprimes are now nsed
to quickly find extremely large primes.

Factoring a positive integer into primes is another central problem in number theory.
The factorization of a positive integer can be found using trial division, but this method
is extremely time-consuming. Fermat, Euler, and many other mathematicians devised
imaginative factorization algorithms, which have been extended in the past 25 years
into a wide array of factoring methods. Using the best-known techniques, we can easily
find primes with hundreds of digits; factoring integers with the same number of digits,
however, is beyond our most powerful computers,

The dichotomy between the time required to find large primes and the time required
to factor large integers is the basis of an extremely important secrecy system, the RSA
eryptosystem, The RSA system is a public-key cryptosystem, a security system in which
each person has a public key and an associated private key. Messages can be encrypted
by anyone using another person’s public key, but these messages can be decrypted
only by the owner of the private key. Concepts from number theory are essential to
understanding the basic workings of the RSA cryptosystem, as well as many other parts of
modern cryptography. The overwhelming importance of number theory in cryptography
contradicts the earlier belief, held by many mathematicians, that number theory was
unimportant for real-world applications. It is ironic that some famous mathematicians,
such as G. H. Hardy, took pride in the notion that number theory would never be applied
in the way that it is today.

The search for integer solutions of equations is another important part of number
theory. An equation with the added proviso that only integer solutions are sought is calied
diophantine, after the ancient Greek mathematician Diophantus. Many different types of
diophantine equations have been studied, but the most famous is the Fermat equation
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X" 4 y" = z", Fermat’s last theorem states that if n is an integer greater than 2, this
equation has no solutions in integers x, y, and z, where xyz # 0. Fermat conjectured
in the seventeenth ceiitury that this theorem was true, and mathematicians (and others)
searched for proofs for more than three centuries, but it was not until 1995 that the first
proof was given by Andrew Wiles,

As Wiles’s proof shows, number theory is not a static subject! New discoveries
continue steadily to be made, and researchers frequently establish significant theoretical
results. The fantastic power available when today’s computers are linked over the Internet
yields a rapid pace of new computational discoveries in number theory. Everyone can
participate in this quest; for instance, you can join the guest for the new Mersenne primes,
primes of the form 27 — 1, where p itself is prime. In June 1999, the first prime with
more than 1 million decimal digits was found: the Mersenne prime 26772593 _ | and
a concerted effort is under way to find a prime with more than 10 million digits, After
learning about some of the topics covered in this text, you may decide to join the hunt
yourself, putting your idle computing resources to good use.

What is elementary number theory? You may wonder why the word “elementary” is
part of the title of this book. This book considers only that part of number theory called
elementary number theory, which is the part not dependent on advanced mathematics,
such as the theory of complex variables, abstract algebra, or algebraic geometry. Students
who plan to continue the study of mathematics will learn about more advanced areas of
number theory, such as analytic number theory (which takes advantage of the theory
of complex variables}, and algebraic number theory (which uses concepts from abstract
algebra to prove interesting results about algebraic number fields).

Some words of advice. As you embark on your study, keep in mind that number
theory is a classical subject with results dating back thousands of years, yet is also the
most modern of subjects, with new discoveries being made at a rapid pace. It is pure
mathematics with the greatest intellectual appeal, yet itis also applied mathematics, with
crucial applications to cryptography and other aspects of computer science and electrical
engineering. | hope that you find the many facets of number theory as captivating as
aficionados who have preceded you, many of whom retained an interest in number theory
long after their school days were over,

Experimentation and exploration form an indispensable part of the study of number
theory. The results in this book were found by mathematicians who often examined
large amounts of numerical evidence, looking for patterns and making conjectures. They
worked diligently to prove their conjectures; some of these were proved and became
theorems, others were rejected when counterexamples were found, and still others remain
unresolved, As you study number theory, I recommend that you examine many examples,
look for patterns, and formulate your own conjectures, This will help you to learn the
subject—and you may even find some new results of your own!
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~ The Integers

Introduction

In the most general sense, number theory deals with the properties of different sets of
numbers. In this chapter, we will discuss some particularly important sets of numbers,
including the integers, the rational numbers, and the algebraic numbers. We will briefly
introduce the notion of approximating real numbers by rational numbers. We will also
introduce the concept of a sequence, and particular sequences of integers, including some
figurate numbers studied in ancient Greece. A common problem is the identification of
a particular integer sequence from its initial terms; we will briefly discuss how to attack
such problems,

Using the concept of a sequence, we will define countable sets and show that the set
of rational numbers is countable. We will also introduce notations for sums and products,
and establish some useful summation formulas.

One of the most important proof techniques in number theory (and in much of
mathematics) is mathematical induction. We will discuss the two forms of mathematical
induction, illustrate how they can be used to prove various results, and explain why
mathematical induction is a valid proof technique.

Continning, we will introduce the intriguing sequence of Fibonacci numbers, and
describe the original problem from which they arose. We will establish some identities
and inequalities involving the Fibonacci numbers, using mathematical induction for
some of our proofs.

The final section of this chapter deals with a fundamental notion in number theory,
that of divisibility. We will establish some of the basic properties of division of integers,
including the “division algorithm.” We will show how the guotient and remainder of a
division of one integer by another can be expressed using values of the greatest integer
function (we will describe a few of the many useful properties of this function, as well).

5
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The Integers

Numbers and Sequences

Tn this section, we introduce basic material that will be used throughout the text. In
particular, we cover the important sets of numbers studied in number theory, the concept
of integer sequences, and summations and products.

Numbers

To begin, we will introduce several different types of numbers. The integers are the
numbers in the set

[..,=3,—2,—1,0,1,2,3,...}.

The integers play center stage in the study of number theory. One property of the positive
integers deserves special mention,

The Well-Ordering Property Every nonempty set of positive integers has a least ele-
ment,

The well-ordering property may seem obvious, but itis the basic principle that allows
us to prove many results about sets of integers, as we will see in Section 1.3.

The well-ordering property can be taken as one of the axioms defining the set of
positive integers or it may be derived from a set of axioms in which it is not included.
{See Appendix A for axioms for the set of integers.) We say that the set of positive
integers is well ordered. However, the set of all integers is not well ordered, as there are
sets of integers without a smatlest element, such as the set of negative integers, the set
of even integers less than 100, and the set of all integers itself.

Another important class of numbers in the study of number theory is the set of
numbers that can be written as a ratio of integers.

Definition. The real number r is rational if there are integers p and g, with g # 0,
such that r = p/qg. If r is not rational, it is said to be irrational,

Example 1.1. The numbers —22/7,0=0/1,2/17, and 1111/41 are rational numbers.
-«

Note that every integer n is a rational number, because # = n/1. Examples of irrational
numbers are +/2, 1, and e. We can use the well-ordering property of the set of positive
integers to show that +/2 is irrational, The proof that we provide, although quite clever,
is not the simplest proof that +/2 is irrational. You may prefer the proof that we will give
in Chapter 4, which depends on concepts developed in that chapter. (The proof that e is

irrational is left as Exercise dd. We refer the reader to [HaWr79] for a proof that  is
irrational. It is not easy.)

Theorem 1.1. +/2 is irrational.
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Proof. Suppose that +/2 were rational. Then there would exist positive integers @ and b
such that +/2 = a/b. Consequently, the set § = {k+/2 | k and k+/2 are positive integers)
is a nonempty set of positive integers (it is nonempty because a = b+/2 is a member of
$). Therefore, by the well-ordering property, S has a smallest element, say s = 1+/2.

We have s+/2 — s = s4/2 — t4/2 = (s — t)«/f. Because 54/2 = 2t and s are both
integers, s+/2 — 5 = 5+/2 — 1v/2 = (s — £)+/2 must also be an integer. Furthermore,
it is positive, because sv2 — 5= s(\/f — 1) and +/2 > 1. It is less than s, because
5 =14/2,5+/2 =21 and +/2 < 2. This contradicts the choice of 5 as the smallest positive
integer in S. It follows that +/2 is irrational. ]

The sets of integers, positive integers, rational numbers, and real numbers are
traditionally denoted by Z, Z™, Q, and R, respectively, Also, we write x € § to indicate
that x belongs to the set S, Such notation will be used occasionally in this book.

‘We briefly mention several other types of numbers here, though we do not return to
them until Chapter 12,

Definition. A number « is algebraic if it is the root of a polynomial with integer
coefficients; that is, & is algebraic if there exist integers ag, ay, . . . , a,, such that a, o +
@, 1" 4+ - - + ag = 0. The number « is called transcendental if it is not algebraic.

Example 1.2. The irrational number +/2 is algebraic, because it is a root of the
polynomial x2 -- 2, -«

Note that every rational number is algebraic, This follows from the fact that the number
a/b, where g and b are integers and b # 0, is the root of bx — ¢. In Chapter 12,
we will give an example of a transcendental number, The numbers ¢ and 7 are also
transcendental, but the proofs of these facts (which can be found in FHaWr79]) are beyond
the scope of this book.

The Greatest Integer Function

In number theory a special notation is used for the largest integer that is less than or equal
to a particular real number,

Definition. The greatest infeger in areal number x, denoted by [x], is the largestinteger
less than or equal to x. That is, [x] is the integer satisfying

XI<=x<[x]+ 1L

Example1.3. Wehave [5/2]=2,{-5/2]=-3,[r]=3,[-2]=-2,and [0]=0. <«

Remark. The greatest integer function is also known as the floor function. Instead of
using the notation [x] for this function, computer scientists usually use the notation [x .
‘Fhe ceiling function is a related function often used by computer scientists. The ceiling
function of a real number x, denoted by [x], is the smallest integer greater than or equal
to x. For example, [5/2] =3 and [—-5/2] = —2.
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The greatest integer function arises in many contexts. Besides being important in
number theory, as we will see throughout this book, it plays an important role in the
analysis of algorithms, a branch of computer science. The following example establishes
a useful property of this function. Additional properties of the greatest integer function
are found in the exercises at the end of this section and in [GrKnPa%4].

Example 1.4, Show that if  is an integer, then {x + n] = [x]+ » whenever x is a real
number. To show that this property holds, let [x]= m, so that m is an integer. This implies
thatm < x < m -+ L. Wecanaddn tothisinequality toobtainm +n <x +n<m+n+ 1L
This shows that m + n = {x]+ » is the greatest integer less than or equal to x -+ 1. Hence
[x +n]l=1x]+n. «

Definition.  The fractional part of a real number x, denoted by {x}, is the difference
between x and the largest integer less than or equal to x, namely [x]. Thatis, {x} =
x —[x]

Because [x] < x < [x]+ 1, it follows that 0 < {x} =x — [x] < 1 for every real
number x. The greatest integer in x is also called the integral part of x because x =
[x]4 {x}.

Example 1.5, We have {5/4} =5/4 —~ [5/4]=5/4 — 1= 1/4 and {-2/3} = -2/3 —
[—2/3]=-2/3- (-1 =1/3. -«

Diophantine Approximation

‘We know that the distance of a real number to the integer closest to it is at most 1/2,
But can we show that one of the first & multiples of a real number must be much closer
to an integer? An important part of number theory called diophantine approximation
studies questions such as this. In particular, it concentrates on questions that involve
the approximation of real numbers by rational numbers. (The adjective diophantine
comes from the Greek mathematician Diophantus, whose biography can be found in
Section 13.1.)

Here we will show that among the first # multiples of a real number o, there must
be at least one at a distance less than 1/n from the integer nearest it. The proof will
depend on the famous pigeonhole principle, introduced by the German mathematician
Dirichlet.! Informally, this principle tells us if we have more objects than boxes, when
these objects are placed in the boxes, at least two must end up in the same box. Although
this seems like a particularly simple idea, it turns out to be extremely useful in number
theory and combinatorics. We now state and prove this important fact, which is known
as the pigeonhole principle because if you have more pigeons than roosts, two pigeons
must end up in the same roost.

nstead of calling Theorem 1.2 the pigeonhole principle, Disichlet called it the Sehubfachprinzip in German,
which translates to the drawer principle in English. A biography of Dirichlet can be found in Section 3.1.
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Theorem 1.2. The Pigeorthole Principle. Tf k + 1 or more objects are placed into &k
boxes, then at least one box contains two or more of the objects,

Proof. If none of the k boxes contains more than one object, then the total number of
objects would be at most k. This contradiction shows that one of the boxes contains at
least two or more of the objects. u

We now state and prove the approximation theorem, which guarantees that one of
the first # multiples of a real number must be within 1/» of an integer. The proof we
give illustrates the utility of the pigeonhole principle. (See [Ro03] for more applications
of the pigeonhole principle.) (Note that in the proof we make use of the gbsolute value
Junction. Recali that {x}, the absolute valne of x, equals x if x > O and —x if x < 0. Also
recall that |x — y| gives the distance between x and y.)

Theorem 1.3. Dirichlet’s Approximation Theorem. Tf « is a real number and n is a
positive integer, then there exist integers @ and b with 1 < ¢ <n suchthat |ae — b| < 1/n.

Proof. Consider the n 4+ 1 numbers 0, {o}, {2«}, ..., {re}. These n -+ 1 numbers
are the fractional parts of the numbers jo, j=0,1,...,n, so that § < {ja} < 1 for
J=0,1,...,n. Each of these n - 1 numbers lies in one of the » disjoint intervals
Ozx<lnl/n=<x<2fn,....(j—D/n=x<j/n...,n—~Dfn<x<1 Be-
cause there are » -+ 1 numbers under consideration, but only » intervals, the pigeonhole
principle tells us that at least two of these numbers lie in the same interval. Because each
of these intervals has length 1/» and does not include its right endpoint, we know that
the distance between two number that lic in the same interval is less than 1/x. It fol-
lows that there exist integers j and k with 0 < j < &k < 5 such that |{ka} — {je}| < 1/n.
Nowleta=k — jand b=[ka] — [jo] Becanse 0 < j <k <n,weseethat 1<a <n.
Moreover,

lac — b = |tk — jlee — ([ker] — [jar])]
= |tk — [ka]) — (jo — [jaD)i
= |{ka} — {je}| < 1/n.

Consequently, we have found integers @ and b with 1 <a < n and |ae — b| < I/n, as
desired. =

Example 1.6, Suppose that e = +/2andn =6, We find that 1 - v2 & 1.414,2 - /2 =
2.828,3. /220 4.243,4 . /22 5.657,5- /2~ 7.071, and 6 - /2 ~ 8.485. Among these
numbers 5 - +/2 has the smaltest fractional part. We see that |5 - +/2 — 7| & [7.071 — 7| =
0.071 < 1/6. 1t follows that when o« = 2 and n = 6, wecantakea=5and b=7to
make jaw — b| < 1/n. «<

Our proof of Theorem 1.3 follows Dirichlet’s original 1834 proof, Proving a stronger
version of Theorem 1.3 with 1/(n + 1) replacing 1/# in the approximation is not diffi-
cult (see Exercise 32). Furthermore, in Exercise 34 we show how to use the Dirichlet
approximation theorem to show that, given an irrational number «, there are infinitely
many different rational numbers p/g such that [@ — p/g| < 1/¢°, and important result
in the theory of diophantine approximation. We will retura to this topic in Chapter 12.
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Sequences

A sequence {a,} is a list of nunbers @, @y, as, . . . . The terms of a sequence can be pat
into a one-to-one correspondence with the set of positive integers using the mapping
f{i) = a;. (Recall that a one-to-one correspondence, also called a bijection, is a function
that is both one-to-one and onto.) We will consider many particular integer sequences
in our study of number theory. We introduce several useful sequences in the following
examples.

Example 1.7. The sequence {a,}, where a, = n?, begins with the terms 1,4, 9, 16, 25,
36,49, 64, . . . . This is the sequence of the squares of integers. The sequence {b,}, where
b, = 2", begins with the terms 2, 4, 8, 16,32, 64, 128, 256, . . . . This is the sequence of
powers of 2. The sequence {c,}, where ¢,, = 0 if n is odd and ¢,, = 1if n is even, begins
withtheterms 0,1,0,1,0,1,0,1,.... -«

There are many sequences in which each successive term is obtained from the
previous term by multiplying by a common factor. For example, cach term in the
sequence of powers of 2 is 2 times the previous term. This leads to the following
definition.

Definition. A geometric progression is a sequence of the form a, ar, ar, ar’, ...,

ark, ..., where g, the initial term, and r, the common ratio, are real numbers.

Example 1.8. The sequence {a,}, where ¢, =3-5", n=0,1,2,.. ., is a geometric
sequence with initial term 3 and common ratio 5. (Note that we have started the sequence
with the term ag. We can start the index of the terms of a sequence with 0 or any other
integer that we choose.) -«

A common problem in number theory is finding a formula or rule for constructing
the terms of a sequence, even when only a few terms are known (such as trying to find
a formuta for the sth trlangular number 14+ 2 4+ 3 + - - - + n). Even though the initial
terms of a sequence do not determine the sequence, knowing the first few terms can lead
to a conjecture for a formula or rule for the terms. Consider the following examples.

Example 1.9. Conjecture a formula for a,,, where the first eight terms of {a,} are
4,11,18, 25,32, 39, 46, 53. We note that each term, starting with the second, is obtained
by adding 7 to the previous term. Consequently, the nth term could be the initial term
plus 7(n — 1). A reasonable conjecture is thata, =44+ 7n—H=7n - 3. «

The sequence proposed in Example 1.9 is an arithmetic progression, that is, a
sequence of the form a,a +d,a + 2d,...,a + nd,. ... The particular sequence in
Example 19hase =4 and 4 =7.

Example 1,10, Conjecture a formula for a,,, where the first eight terms of the sequence
{a,} are 5, 11,29, 83, 245, 731, 2189, 6563. We note that each term is approximately 3
times the previous term, suggesting a formula for a,, in terms of 3*. The integers 3" for
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n=123,. ., are 3,9,27, 81,243,729, 2187, 6561. Looking at these two sequences
together, we find that the formula a,, = 3" - 2 produces these terms. -«

Example 1.11.  Conjecture a formula for a,,, where the first ten terms of the sequence
{a,} are 1,1,2,3,5, 8, 13, 21, 34, 55. After examining this sequence from different
perspectives, we notice that each term of this sequence, after the first two terms, is the
sum of the two preceding terms. That is, we see that a, = a,_; +a,_, for 3 <n < 10
This is an example of a recursive definition of a sequence, discussed in Section 1.3. The
terms listed in this example are the initial terms of the Fibonacei sequence, which is
discussed in Section 1.4. «

Integer sequences arise in many contexts in number theory. Among the sequences
we will study are the Fibonacci numnbers, the prime numbers (covered in Chapter 3), and
the perfect numbers (introduced in Section 7.3). Integer sequences appear in an amazing
range of subjects besides number theory. A fantasticatly diverse collection of more than
8000 integer sequences has been amassed by Neil Sloane, who created The Encyclopedia
of Integer Seguences ([SIP195]) with Simon Plouffe. An extended version of this list, and
a program for finding sequences that match initial terms provided as input, can be found
on the Web. You may find this a valuable resource as you continue your study of number
theory (as well as other subjects),

We now define what it means for a set to be countable, and show that a set is countable
if and only if its elements can be listed as the terms of a sequence.

Definition. A set is countable if it is finite or it is infinite and there exists a one-to-
one correspondence between the set of positive integers and the set. A set that is not
countable is called nncountable.

An infinite set is countable if and only if its elements can be listed as the terms of a
sequence indexed by the set of positive integers. To see this, simply note that a one-to-
one correspondence f from the set of positive integers to a set § is exactly the same as
a listing of the elements of the set in a sequence ay, ay, . . ., 4, . . ., where g; = f(i).

Example 1.12, The set of integers is countable, because the integers can be listed
starting with 0, followed by 1 and —1, followed by 2 and —2, and so on. This produces
the sequence 0,1, —1,2, 2,3, -3,..., where a; =10, a5, = n, and a1 = —n for
n=1,2,.... «

Is the set of rational numbers countable? At first glance, it may seem unkikely that
there would be a one-to-one correspondence between the set of positive integers and the
set of all rational numbers. However, there is such a correspondence, as the following
theorem shows.

Theorem 1.4. The set of rational numbers is countable,

Proof.  We can list the rational mumbers as the terms of a sequence, as follows. First, we
arrange all the rational numbers in a two-dimensional array, as shown in Figure 1.1. We
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put all fractions with a denominator of 1 in the first row. We arrange these by placing the
fraction with a particular namerator in the position this numerator occupies in the list of
all integers given in Example 1.12. Next, we list all fractions on successive diagonals,
following the order shown in Figure 1.1. Finally, we delete from the list ali fractions that
represent rational numbers that have already been listed. (For example, we do not list
2/2, because we have already listed 1/1.)

e

3

s A s B
43/3/—_1/2_/—_2 .

22 2 2 2 2
Q/L/:l/l-_Zi

3 43 3 3 3 3
4_0_/3/:12;2:1...

i 4 4 4 4 4

. . .
[ . . . - - .
. . . . .

Figure 1.1 Listing the rational numbers.

The initial terms of the sequence are 0/1=0, 1/1=1, ~1/1=-1,1/2,1/3, - 1/2,

2/1=2,-2/1=-2,—1/3,1/4, and so on.) We leave it to the reader to fill in the details,
to see that this procedure lists all rational numbers as the terms of a sequence, =

1.1 Exercises

1. Determine whether each of the following sets is well ordered. Either give a proof using

= 2

the well-ordering property of the set of positive integers, or give an example of a subset

of the set that has no smallest element.

a) the set of integers greater than 3

b) the set of even positive integers

c) the set of positive rational numbers

d) the set of positive rational numbers that can be written in the form a/2, wherea is a
positive integer

¢) the set of nonnegative rational numbers

Show that if @ and b are positive integers, then there is a smallest positive integer of the
forma — bk, k e Z.

3. Prove that both the sum and the product of two rational numbers are rational.

4. Prove or disprove each of the following statements,

a) The sum of a rational and an irrational number is irrational.

b) The sum of two irrational numbers is irrational.

¢) The product of a rational number and an irrational number is irrational.
d) The product of two irrational numbers is irrational.
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10.

11.
12,
13
14,
15,

16.
17.

18.

%19,
* 20.

21.
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. Use the welt-ordering property to show that +/3 is irrational.

. Show that every nonempty set of negative integers has a greatest element.

Find the following values of the greatest integer function,

a) [1/4] d) [-2]
b) [—3/4] e) [[1/21+ 11/21]
c) [22/7] HI-3+[-1/21]

. Find the following values of the greatest integer function.

a) [—1/4] d) [11/2])
by [-22/7] e) [[3/2]+ [-3/2]]

¢ [5/4] £) 3 - 11/2])

. Find the fractional part of each of the following numbers.
a) 8/5 c)—11/4
b) 1/7 d)7
Find the fractional part of each of the following numbers.
a) —8/5 c)—1
by22/7 dy—1/3

What is the value of [x] + [—x] where x is a real number?

Show that [x]+ [x + 1/2] = [2x] whenever x is a real number,

Show that [x + y] = [x]+ [y] for all real numbers x and y.

Show that [2x]4 [2y] = [x] + [y] + [x + y] whenever x and y are real numbess.

Show that if x and y are positive real numbers, then [xy] = [x][y]. What is the situation
when both x and y are negative? When one of x and y is negative and the other positive?

Show that —[—x] is the least integer greater than or equal to x when x is a real number.

Show that [x 4 1/2] is the integer nearest to x {(when there are two integers equidistant
from x, it is the targer of the two).

Show that if m and n are integers, then [{x + n)/m] = [([x]+ n)/m] whenever x is a
reat number.

Show that [«/{x][ = [ﬁ] whenever x is a nonnegative real number.

Show that if m is a positive integer, then
[mx] =[x+ [x + /)i + [x + 2/m)]+ - -« + [x + (m — 1}/ m)
whenever x is a real number.
Conjecture a formula for the nth term of {a,}, if the first ten terms of this sequence are
as follows.
a) 3,11,19,27,35,43,51,59,67,75
by 5,7,11,19,35,67,131, 259,515, 1027
¢ 1,0,0,1,0,0,0,0,1,0
dy 1,3,4,7,11,18,29,47,76, 123
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22. Conjecture a formula for the nth term of {a,}, if the first ten terms of this sequence are

23.

25,
26.

27

* 28

-

% 29,
30.

31.

32,

33,

3.

35,
36.

37

as follows.

a) 2,6,18,54, 162,486, 1458, 4374, 13122, 39366
b 1,1,0,1,1,0,1,1,0,1

¢y 1,2,3,5,7,10,13,17,21,26

d} 3,5,11,21,43,85,171,341, 683, 1365

Find three different formulas or rules for the terms of a sequence {a,}, if the first three
terms of this sequence are 1,2, 4.

. Find three different formulas or rules for the terms of a sequence {a,}, if the first three

terms of this sequence are 2, 3, 6.
Show that the set of all integers greater than — 100 is countable.

Show that the set of all rational numbers of the form n/5, where n is an integer, is
countable.

Show that the set of all numbers of the form a + b+/2Z, where a and » are integers, is
countable.

Show that the union of two countable sets is countable.
Show that the union of a countable number of countable sets is countable.
Using a computational aid, if needed, find integers @ and & such that 1 <a =< 8 and

lace — b| < 1/8, where o is

a) /2. c)y.
b) 2. dye.

Using a computational aid, if needed, find integers @ and & such that 1 <a <10 and
| — bt < 1/10, where ¢ is

a) /3. R
b) /3. d) .
Prove the following stronger version of Dirichlet’s approximation, If & is a real number
and » is a positive integer, there are integers a and b such that 1 a <n and lao — b| <

1/(n + 1. (Hint: Consider the n + 2 numbers 0, . . ., {jor}, ..., land then + 1 intervals
k—-—D/n+D=x<kfn+Dfork=1,...,n+1)

Show that if o is a real number and # is a positive integer, then there is an integer k such
that lo — u/ k| < 1/2k.

Use Dirichlet’s approximation theorem to show that if « is an irrational number, then
there are infinitely many positive integers g for which there is an integer p such that

e ~ p/gl < 1/¢>.
Find four rational numbers p/q with |v2 — p/ql < 1/g%.
Find five rational numbers p/q with [¥/5 — p/q| < /g%

Show that if o = a/b is a rational number, then there are only finitely many rational
numbers p/q such that |p/q — a/b| < 1/4>
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The spectrum sequence of a real number « is the sequence that has [no] as its nth term.

38. Find the first ten terms of the spectrum sequence of each of the following numbers,

a)2 C)2+42 &) (14 4/5)/2
b} /2 d) e
39. Find the first ten terms of the speetrum sequence of each of the following numbers,
a)3 ¢y 3+ v3)/2
b3 d)y

15

40. Prove that if « 3 B, then the spectrum sequence of « is different from the spectrum

sequence of 8.

#% 41, Show that every positive integer occurs exactly once in the spectrum sequence of & or in
the spectrum sequence of 8 if and only if « and B are positive irrational numbers such

that 1/ + 1/8 = 1.

The Ulam numbers u,,n=1,2,3,... are defined as follows. We specify that u, = I and
uy = 2. For each successive integer m, m > 2, this integer is an Ulam number if and only if it
can be written uniquely as the sum of two distinct Ulam numbers. These numbers are named

for Stanislaw Ulam, who first described them in 1964.

STANISLAW M, ULAM (1909-1984) was born in Lvov, Poland. He became
interested in astronomy and physics at age 12, after receiving a telescope from
his uncle. He decided to learn the mathematics required to understand relativity
theory, and at the age of 14 he used textbooks te learn calculus and other
mathematics.

Ulam received his Ph.D. from the Polytechnic Institute in Lvov in 1933,
completing his degree under the mathematician Banach, in the area of real
analysis. In 1935, he was invited to spend several months at the Institute for
Advanced Study; in 1936, he joined Harvard University as a member of the Society of Fellows,
remaining in this position until 1940. During these years he returned each summer to Poland where
he spent time in cafes, such as the Scottish Cafe, intensely doing mathematics with his fellow Polish
mathematians. ‘

Luckily for Ulam, he left Poland in 1939, just one month before the outbreak of World War
1. In 1940, he was appointed to a position as an assistant professor at the University of Wisconsin,
and in 1943, he was enlisted to work in Los Alamos on the development of the first atomic bomb,
as part of the Manhattan Project. Ulam made several key contributions that led to the creation of
thermonuclear bombs. At Los Alamos, Ulam also developed the Monte Carle method, which uses a
sampling technique with random numbers to find solutions of mathematical problems.

Ulam remained at Los Alamos after the war until 1963, He served on the faculties of the
University of Southern California, the University of Colorado, and the University of Florida, Ulam
had & fabulous memory and was an extremely verbal person. His mind was a repository of stories,
jokes, puzzles, quotations, formulas, problems, and many other types of information. He wrote several
books, including Sets, Numbers, and Universes and Adventures of a Mathematician. He was interested
in and contributed to many areas of mathernatics, including number theory, real analysis, probability
theory, and mathematical biology.
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42,
= 43,
# d4,

Find the first ten Ulam numbers.
Show that there are infinitely many Ulam nnmbers.

Prove that e is irrational. (Hint: Use the fact that e = 1+ 1/11 4 1/21 4 1/314 .- - )

1.1 Computational and Programming Exercises

1.2

Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1.
2.
J.

Find 10 rational numbers p/g such that | - p/g| < 1/q%.
Find 20 rational numbers p/q such that [e — p/g| < 1/q%.

Find as many terms as you can of the spectrum sequence of +/2. (See the preamble to
Exercise 38 for the definition of spectrum.)

. Find as many terms as you can of the spectrum sequence of 7, (See the preamble to

Exercise 38 for the definition of spectrum.)

5. Find the first 1600 Ulam numbers.

6. How many pairs of consecutive integers can you find, where both are Ulam numbers?

7. Can the sum of any two consecutive Ulam numbers, other than 1 and 2, be another Ulam

=
+

number? If so, how many examples can you find?

. How large are the gaps between consecutive Ulam numbers? Do you think that these

gaps can be arbitrarily long?

What conjectures can you make about the number of Ulam numbers less than an integer
1?7 Do your computations support these conjectures?

Programming Projects

Write programs using Maple, Mathematica, or a language of your choice to do the following.

L
2
3.

Giiven a number o, find rational numbers p/g such that |« — p/gq| = /g%
Given a number a, find its spectrum sequence.

Find the first # Ulam numbers, where n is a positive integer.

Sums and Products

Because summations and products arise so often in the study of number theory, we now
introduce notation for summations and products. The following notation represents the
sum of the mumbers ay, a;,. .., a,:

H

Zak=a1+02+"'+aﬂ'
k=1
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The letter k, the index of summation, is a “dummy variable” and can be replaced by any
tetter. For instance,

i n H
Zak = Zaj = Z a;, and so forth.
k=1 j=1 i=l
Example 1.13, Weseethatzizlj =1+24+3+445=15, E?=12=2 +24+2+
2+2=10,and )} 2 =2422 427+ 24+ 25 =62,
We also note that, in summation notation, the index of summation may range

between any two integers, as long as the lower limit does not exceed the upper limit,
If m and n are integers such that m <n, then 3}y ay =a, +a,41+---+a,. For

instance, we have 333 k2 =3 4 42 4 52 =50, Y.2_ 3 =34 31+ ¥ =13, and
Y=+ (D + 0P P8, <

We will often need to consider sums in which the index of summation ranges over
all those integers that possess a particular property. We can nse summation notation to
specify the particular property or properties the index must have for a term with that index
to be included in the sum. This use of notation is illustrated in the following example.

Example 1.14. We see that

3 WG HD=1/1+1/241/5+1/10=9/5,
j=<14
je[izlneZ}

because the terms in the sum are all those for which j is an integer not exceeding 10 that
is a perfect square. <

The following three properties for summations are often useful, We leave their proofs
to the reader.

(1.1) Zkaj=kiaj

j=m Jj=m
n n n
(12) Ylai+bp=>"a;+ > b;
J=m J=m J=m
nooq n q q n
(3) DD b= (Z “f) Db =22 b
i=m j=p i=m Jj=p Jj=pi=m

Next, we develop several useful summation formulas. We often need to evaluate
sums of consecutive terms of a geometric series. The following example shows how a
formula for such sums can be derived.
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Example 1.15. To evaluate

n
S= Z arl,
j=0

the sum of the first # 4 1 terms of the geometric series a, ar, . .

both sides by r and manipulate the resulting sum to find:
H
ré§=r Z ar/
j=0
n
= ar
j=0

ark .

= Z ark (shifting the index of summation)

k=1

n
= Z ar* + (@™ —a)  (removing the term withk =n + 1
k=0

., we multiply

from the set and adding the term with k = 0)

= § 4 (@ — a).
It follows that
rS—8=(ar*t —a.
Solving for § shows that when r # 1,

ar""‘l —a
r—1

S:

Note that when r = 1, we have 3 7_gar/ =3 _ja=(n+ Da.

«

Example 1.16. Takinga =3,r = —5, and n = 6 in the formula found in Example 1,15,

we see that Z?:o (=5 = 3(%?_7—{3 =39,063.

>

The following example shows that the sum of the first n consecutive powers of 2 is

one less than the next power of 2.

Example 1.17. Let n be a positive integer. To find the sum

n
doob=12422 442
k=0

we use Example 1.15, with a = | and r = 2, to obtain

2)1+I_1
2—-1

1+2+22+... 42" =

- 2n+l _

1.
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A summation of the form Z;f:l(a j —aj_1), where ag,ay, a3, . . . ,a, is 2 sequence
of numbers, is said to be telescoping. Telescoping sums are easily evaluated because

n
Zaj ~ai_1=(@—ap) +{@—~a)+---+ @, —a,
=1
=4, — 4dg.
The ancient Greeks were interested in sequences of numbers that can be represented

by regular arrangements of equally spaced points. The following example illustrates one
such sequence of numbers.

Example 1.18. The triangular numbers t), 13,13, . . . , 1, . . . is the sequence where t,
is the number of dots in the triangular array of & rows with j dots in the jth row. «

b
Figure 1.2 illustrates that 1, counts the dots in successively larger regular triangles
fork=1,2,3,4, and 5.

LA AA

Figure 1.2 The Triangular Numbers.
Next, we will determine an explicit formula for the kth triangular number f;.

Example1.19. How can we find a formula for the nth triangular number? One approach
is to use the identity (k + 1)? — k% =2k + 1. When we isolate the factor k, we find
that k = ((k + )2 — k%)/2 — 1/2. When we sum this expression for k over the values
k=1,2,...,n, we obtain

i
= k
k=1

= (Z((k + 12— kD /2) — > 12 (replacing k with ((k + 1* — k2)/2)

k=1 k=1
=({(n+ 1)2/2 -2y —-n/2 (simplifying a telescoping sum)
=+ 2n)/2 —nf2
=n*+n)/2

=nn + 13/2.
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The second equality here follows by the formula for the sum of a telescoping series with
a; = (k 4 1)? — k%. We conclude that the nth triangular number 4, = n{n + /2. (See
Exercise 7 for another way to find £,.) «

We also define a notation for products, analogous to that for summations, The
product of the numbers ay, @y, . . . , 4, is denoted by

n
H“f =aay - a,.
j=1
The letter j above is a “dummy variable,” and can be replaced arbitrarily.

Example 1.20. To illustrate the notation for products, we have

e

j=1-2.3-4.5=120,

s,
I
-

2=2.2.2.2.2=27:=32, and

%

1

2 =9.22.23.24.25 =20,
1 -

ke

J

The factorial function arises throughout number theory.

Definition. Let n be a positive integer. Then n! (read as “n factorial”) is the product
of the integers 1,2, . . ., n. We also specify that 0! = 1. In terms of product notation, we
have n!=[T}_; J.

Example 1.21. We have 11=1,4/=1-2.3.4=24,and 121=1-2-.3-4-5.6-7-
§.9.10-11- 12 =479, 001, 600. «

1.2 Exercises

1. Find each of the following sums.

DY WXL 9T YD
2. Find each of the following sums.

DY1,3 Y0 -3  9XiLUt+D/G+D)
3. Find each of the following sums.

D52 X3 o X 3-12Y

4, Find each of the following sums.

DY 283 B oL/
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# 8, Find and prove a formula for Zif:l[«/i] in terms of n and [./n].

6. By putting together two triangular arrays, one with # rows and one with n - 110ws, to
form a square (as illustrated for n = 4), show that 1, | + t, = n?, where 7, is the nth

triangular number.
e\ o & o
e e\ e o
e & o 8
e & o @

7. By putting together two triangular arrays, each with n rows, to form a rectangular array
of dots of size n by n 4 1 (as illustrated for n = 4), show that 2¢, = n(n + 1). From this,
conclude that 1, = n(n + 1)/2,

® & o ¢ 0
® & 8/ 0 @
e o ¢ o »
e /0 o o @
The pentagonal numbers py, ps, P3. ..., P, - . ., are the integers that count the number of

dots in % nested pentagons, as shown in the following figure.

. O

1 5 12 22

8. Show that p;= land p = p;_; + (3k — 2) fork = 2. Conclude that p, = 3 _, (3k —2).

9. Prove that the sum of the (# — 1)st triangular number and the nth square number is the
nth pentagonal number.

10. a) Define the hexagonal numbers in a manner analogous to the definitions of triangutar,
square, and pentagonal numbers. (Recall that a hexagon is a six-sided polygon.)

b) Find a closed formula for hexagonal numbers,

11. a) Define the heptagonal numbers in a manner analogous to the definitions of triangular,
square, and pentagonal nambers. (Recall that a heptagon is a seven-sided polygon.)

b) Find a closed formula for heptagonal numbers.
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The tetrahedral numbers Ty, Ty, T3, . . ., Ty, . . . , are the integers that count the number of
dots on the faces of k nested tetrahedra, as shown in the following figure.

12,
13,
14.
15.

16.

17.

18.
19.

20.

21.

22.

23.
24.

1 4 10 20

Show that the nth tetrahedral number is the sum of the first n triangular numbers,
Find and prove a closed formula for the nth tetrahedral number.
Find n! for # equal to each of the first ten positive integers.

List the integers 100!,- 100100, 2100 and (5002 in order of increasing size. Justify your
ANSWEL. .

Express each of the following products in terms of [[}_, a;, where k is a constant,
; k
a) Hf:l ka; b) HLl ia; c) H?ﬁl q;
: : I 1 1 7 1
Use the identity oy = § — 557 to evaluate Yol T

Use the identity gty = § (i ~ ) to evalvate T, by
Find a formula for 3 ;_, k2 using a technigue analogous to that in Example 1.19 and the

formula found there.

Find a formula for 3 p_, %> using a technique analogous to that in Example 1.19, and
the results of that example and Exercise 19.

Without multiplying all the terms, show that

a) 101=617L ¢) 161= 14151218,
by 101=71513L d)91=7131312L

Let ¢, ay, ..., G, be positive integers. Let b= (q;! ap!... a,) — 1, and ¢ =
ailayt. .. a,) Show that ¢l =a!ay!l- - - a,1bl.
Find all positive integers x, y, and z such that !4 yl=z!

Find the values of the following products.

) [T}, (1= 1/ D [Tj,U - 177

Computational and Programming Exercises

Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carty out the following computations and explorations.
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1. What are the largest values of n for which »! has fewer than 100 decimal digits, fewer
than 1000 decimal digits, and fewer than 10,600 decimal digits?
Programming Projects
Write programs using Maple, Mathematica, or a language of your choice to do the following.
1

. n
1. Given the terms of a sequence ay, a,, . . ., a,,, compute ZFI a; and ]_E].=1 a;.

2. Given the terms of a geometric progression, find the sum of its terms.

Mathematical Induction

By examining the sums of the first # odd positive integers for small values of #, we can
conjecture a formula for this sum. We have

1=1,
1+3=4,
1+345=9,

1+3+5+7=16,
14+3+5+7+9=25,
14+34+54+74+9+11=36.

From these values, we conjecture that Z’J’.ZI(Q J—D=1+3 —|- S+T74+-F+2n—1=
n? for every positive integer n.

How can we prove that this formula holds for all positive integers n?

The principle of mathematical induction is a valuable tool for proving results
abount the integers-—such as the formula just conjectured for the sum of the first # odd
positive integers. First, we will state this principle, and then we will show how it is
used. Subsequently, we will use the well-ordering principle to show that mathematical
induction is a valid proof technique. We will use the principle of mathematical induction,
and the well-ordering property, many times in our study of number theory.

We must accomplish two things to prove by mathematical induction that a particular
statement holds for every positive integer. Letting S be the set of positive integers for
which we claim the statement to be true, we must show that 1 belongs to §; that is, that
the statement is true for the integer 1. This is called the basis step.

Second, we must show, for each positive integer n, that # + 1 belongs to § if # does;
that is, that the statement is true for # + 1if it is true for i, This is called the inductive step.
Once these two steps are completed, we can conclude by the principle of mathematical
induction that the statement is true for all positive integers.

Theorem 1.5. The Principle of Mathematical Induction. A set of positive integers
that contains the integer 1, and that has the property that, if it contains the integer k, then
it also contains k -+ 1, must be the set of all positive integers.
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We illustrate the use of mathematical induction by several examples; first, we prove
the conjecture made at the start of this section.

Example 1.22. We will use mathematical induction to show that

i
Ejay—n=1+3+~-+on—n=n2
j=1
for every positive integer n. (By the way, if our conjecture for the value of this sum was
incorrect, mathematical induction would fail to produce a proof!)
We begin with the basis step, which follows because
1
Yei-n=2-1-1=1=1
j=t

For the inductive step, we assume the inductive hypothesis that the formula holds
for n; that is, we assume that Z’}f=1(2 j — 1) = n?. Using the inductive hypothesis, we
have

a+l n
2(2]' — 1= E(Zj — D+ QM+ D -1 {splitting off the term with j=n -+ 1)
j=1 j=1

=n42n+D—1 (using the inductive hypothesis)
=nt+2m+1
=+ D2
Because both the basis and the inductive steps have been completed, we know that the
result holds, «

Next, we prove an inequality via mathematical induction.

Example 1.23. We can show by mathematical induction that n! < a" for every pos-
itive integer n. The basis step, namely the case where n = 1, holds since l!=1x<
1t = 1. Now, assume that n! < n”; this is the inductive hypothesis. To complete the
proof, we must show, under the assumption that the inductive hypothesis is true, that -

The Origin of Mathematical Induction

The first known use of mathematical induction appears in the work of the sixteenth-century
mathematician Francesco Maurolico (1494-1575). In his book Arithmeticorum Libri Duo,
Maurolico presented various properties of the integers, together with proofs, He devised the
method of mathematical induction so that he could complete some of the proofs, The first
use of mathematical induction in his book was in the proof that the sum of the first # odd
positive integers equals ni.
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(n + D! < (n + 1)"*1. Using the inductive hypothesis, we have
- n+D=n+1)- n!
<{n+ DHa"
<{n+Dn+ 1
< (n+ DT,
This completes both the inductive step and the proof, <

We now show that the principle of mathematical induction follows from the well-
ordering principle.

Proof. Let § be a set of positive integers containing the integer 1, and the integer n -+ 1
whenever it contains 7. Assume (for the sake of contradiction) that 5 is not the set of
all positive integers. Therefore, there are some positive integers not contained in §. By
the well-ordering property, because the set of positive integers not contained in S is
nonempty, there is a least positive integer » that is not in S. Note that n # 1, since 1is
in S.

Now, because 1 > 1 (as there is no positive integer n with n < 1), the integer n — 1
is a positive integer smaller than #, and hence must be in §. But because § contains
n — 1, it must also contain (n — 1) + 1 = n, which is a contradiction, as n is supposedly
the smallest positive integer not in S. This shows that S must be the set of all positive
integers. u

A slight variant of the principle of mathematical induction is also sometimes useful
in proofs.

Theorem 1.6. The Second Principle of Mathematical Induction. A set of positive
integers that contains the integer 1, and that has the property that, for every positive
integer »n, if it contains all the positive integers 1,2, ..., n, then it also contains the
integer 1 -+ 1, must be the set of all positive integers.

The second principle of mathematical induction is sometimes called sfrong indne-
tion to distinguish it from the principle of mathematical induction, which is also called
weak induction.

Before proving that the second principle of mathematical induction is valid, we will
give an example to illustrate its use.

Example 1.24.  We will show that any amount of postage more than one cent can be
formed using just two-cent and three-cent stamps. For the basis step, note that postage
of two cents can be formed using one two-cent stamp and postage of three cents can be
formed using one three-cent stamp., '

For the inductive step, assume that every amount of postage not exceeding » cents,
n > 3, can be formed using two-cent and three-cent stamps. Then a postage amount of
n + 1 cents can be formed by taking stamps of n — 1 cents together with a two-cent
stamp. This completes the proof, «
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We will now show that the second principle of mathematical induction is a valid
technique.

Proof. Let T be a st of integers containing 1 and such that for every positive integer
n, if it contains 1,2, . . ., n, it also contains n + 1. Let S be the set of all positive integers
n such that all the positive integers less than or equal to  are in 7. Then 1is in S, and
by the hypotheses, we see that if # is in S, then » -+ 1 is in §. Hence, by the principle
of mathematical induction, § must be the set of all positive integers, so clearly T is also
the set of all positive integers, since S is a subset of 7. [

Recursive Definitions

The principle of mathematical induction provides a method for defining the values of
functions at positive integers. Instead of explicitly specifying the value of the function
at n, we give the value of the function at 1 and give a rule for finding, for each positive
integer n, the value of the function at n - 1 from the value of the function at n.

Definition. We say that the function f is defined recursively if the value of f at 1is
specified and if for each positive integer n a rule is provided for determining f(n 4+ 1)
from f(n).

The principle of mathematical induction can be used to show that a function that is
defined recursively is defined uniquely at each positive integer (see Exercise 25 at the
end of this section). We illustrate how to define a function recursively with the following
definition.

Example 1.25. We will recursively define the factorial function f(n) =n !, First, we
specify that
fhy=1 ‘
Then we give a rule for finding f (7 -+ 1) from f (ﬁ) for each positive integer, namely
fa+D=@n+1D- fn).
These two statements uniquely define n! for the set of positive integers.

To find the value of f(6) = 6! from the recursive definition, use the second property
successively, as follows:

f(6):6-f(5)=6-5-f(4)=6-5-4-f(3):6-5-4-3-f(2)ﬂ6-5-4-3-2-f(1).

Then use the first statement of the definition to replace f(1) by its stated value 1, to
conclude that

6l=6-5-4.3.2.1=720. «
The second principle of mathematical induction also serves as a basis for recursive

definitions. We can define a function whose domain is the set of positive integers by
specifying its value at 1 and giving a rule, for each positive integer n, for finding f(n)
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from the values f(f) for each integer j with 1 < j <n — 1. This will be the basis for the
definition of the sequence of Fibonacci numbers discussed in Section 1.4,

1.3 Exercises

1. Use mathematical induction to prove that n < 2" whenever n is a positive integer.

10.

11.
12

13,

14.

. Conjecture a formula for A" where A = (

. Conjecture a formula for the sum of the first # even positive integers. Prove your result

using mathematical induction.

» Use mathematical induction to prove that 3 7 _ kii = 1l2 +L ot % <2~ L when-

2 [l
ever n is a positive integer,

] 1 £

- Conjecture a formula for 373 paby = g5 + 75+ + amiy from the value of

this sum for small integers n. Prove that your conjecture is correct using mathematical
induction. (Compare this to Exercise 17 in Section 1.2.)

é }) Prove your conjecture using mathe-

matical induction,

. Use mathematical induction to prove that Z’Jf:l J=14+2434+--+tn=nn+1)/2

for every positive integer n. (Compare this to Example 1.19 in Section 1.2.)

- Use mathematical induction to prove that 37, 2= +224+ 3 +... 4+ n?=

#1(n + 1){(2n + 1)/6 for every positive integer n.

. Use mathematical induction to prove that Z;;l P=P+2 434 b=

[rt(n + 1)/2F for every positive integer n.

» Use mathematical induction to prove that 3% | j(G+ 1) =1-2+42-34 ...+ n

(n 4+ 1) = n{n + D(n + 2)/3 for every positive integer .

Use mathematical induction to prove that 33} (-D/12=12-224+32 ... 4
(— "2 = (= D™ 'n(n + 1)/2 for every positive integer ».

Find a formula for T]}_, 2/.

Show that Z;'.:lj SJl=1 1142204 - et = (1 4 1)1 — 1 for every positive
integer 1.

Show that any amount of postage that is an integer number of cents greater than 11 cents
can be formed using just 4-cent and 3-cent stamps.

Show that any amount of postage that is an integer number of cents greater than 53 cents
can be formed using just 7-cent and 10-cent stamps.

Let H, be the nth partial sum of the harmonic series, that is, H, = Z?=1 1/j.

* 18,
* 16.
17.
18.

Use mathematical induction to show that Hon = 1 +n/2.
Use mathematical induction to show that I < 14 n.
Show by mathematical induction that if » is a positive integer, then (2n)! < 227 (n )%,

Use mathematical induction to prove that x — y is a factor of x® - y", where x and y
are variables. :
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= 10,

20,
21.
22,

23.

24.

25,

26.

27.
28.

29.

30.
31.

# 32,

Use the principle of mathematical induction to show that a set of integers that contains
the integer &, such that this set contains » + 1 whenever it contains #, contains the set of
integers that are greater than or equal to k.

Use mathematical indaction to prove that 2* < n!forn = 4.
Use mathematical induction to prove that n? < n!forn > 4.

Show by mathematical induction thatif & > —1, then 1 +nh < {1+ k)" for all nonneg-
ative integers n.

A jigsaw puzzle is solved by putting its pieces together in the correct way. Show that
exactly n — 1 moves are required to solve a jigsaw puzzle with n pieces, where a move
consists of putting together two blocks of pieces, with a block consisting of one or more
assembled pieces. (Hint: Use the second principle of mathematical induction.)

Explain what is wrong with the following proof by mathematical induction that all horses
are the same color: Clearly all horses in any set of 1 horse are all the same color. This
completes the basis step. Now assume that all horses in any set of n horses are the
same color. Consider a set of n 4 1 horses, labeled with the integers 1,2,...,n+ L
By the induction hypothesis, horses 1,2,...,n are all the same color, as are horses
2,3, ...,n,n+ L. Because these two sets of horses have common members, namely
horses 2,3,4,...,n, all # + 1 horses must be the same color. This completes the
induction argument.

Use the principle of mathematical induction to show that the value at each positive integer
of a function defined recursively is uniquely determined.

What function f (n} is defined recursively by f(1} =2 and fin+ Y =2f(n)forn= 17
Prove your answer using mathematical induction.

If g is defined recursively by g(1) =2 and g{(n) =2¢ =D for n = 2, what is g(4)?

Use the second principle of mathematical induction to show that if £(1) is specified and
a rule for finding f(# + 1) from the values of f at the first # positive integers is given,
then f{n) is uniquely determined for every positive integer 7.

We define a function recursively for all positive integers n by f(1) =1, f(2) =5, and for
n=>2, fin+ D= f)+2f (@ —1). Show that f(n) = 27 4+ (—D)*, using the second
principle of mathematical induction.

Show that 27 > n% whenever n is an integer greater than 4.

Suppose thatag = 1, =3, ey =9, and a, =a,_+a, 2 + a3 for n > 3. Show that
a, < 3" for every nonnegative integer n.

The tower of Hanoi was a popular puzzle of the late nineteenth century. The puzzie

includes three pegs and eight rings of different sizes placed in order of size, with the

largest on the bottom, on one of the pegs. The goal of the puzzle is to move all of the

rings, one at a time, without ever placing a larger ring on top of a smaller ring, from the

first peg to the second, using the third as an auxiliary peg.

) Use mathematical induction to show that the minimum number of moves to transfer
n rings from one peg to another, with tie rules we have described, is 2" — L

b) Anancient legend tells of the monks in a tower with 64 gold rings and 3 diamond pegs.
They started moving the rings, one move per second, when the world was created.
When they finish transferring the rings to the second peg, the world will end. How
long will the world last?

-



* 33,

34.

36.

h
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The arithmetic mean and the geometric mean of the positive real numbers ay, as, . . .,
a,are A= (a;+a,+ - -+a,)/n and G = (aya, - - - a,) V", respectively. Use mathe-
matical induction to prove that A > G for every finite sequence of positive real numbers,
‘When does equality hold?

Use mathematical induction to show that a 2" x 2” chessboard with one square missing
can be covered with L-shaped pieces, where each L-shaped piece covers three squares,

A wunit fraction is a fraction of the form 1/n, where n is a positive integer. Because the
ancient Egyptians represented fractions as sums of distinct unit fractions, such sums
are catled Egyprian fractions. Show that every rational number p/q, where p and g are
integers with 0 < p < g, can be written as a sum of distinct unit fractions, that is, as
an Egyptian fraction. (Hint: Use strong induction on the numerator p to show that the
algorithm that adds the largest possible unit fraction at each stage always terminates. For
example, running this algorithm shows that 5/7 = 1/2 + 1/5 + 1/70.)

Using the algorithm in Exercise 35, write each of these numbers as Egyptian fractions.
a)2/3 ey 11/17
b)5/8 d) 44/101

1.3 Computational and Programming Exercises

Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1.

Complete the basis and inductive steps, using both numerical and symbolic computation,
to prove that 2?:1 J =n{n + 13/2 for all positive integers n.

Complete the basis and inductive steps, using both numerical and symbolic computation,
to prove that 235:1 7% =n(n + D(2n + 1)/6 for all positive integers n.

. Complete the basis and inductive steps, using both numericat and symbolic computation,

to prove that ZLL 73 = (n(n + 1)/2) for all positive integers n.

. Use the values Z:ﬁjl j4 forn=1,2,3,4,5,6 to conjecture a formula for this sum that

¥

is a polynomial of degree 5 in n. Attempt to prove your conjecture via mathematical
induction using numerical and symbolic computation.

Paui Erds and E. Strauss have conjectured that the fraction 4/#n can be written as the
sum of three unit fractions, thatis, 4/n = I/x 4+ 1/y + 1/z, where x, y, and z are distinct
positive integers for all integers n with n > 1. Find such representation for as many
positive integers i as you can.

It is conjectured that the rational mamber p/q, where p and g are integers with0 < p < ¢
and g is odd, can be expressed as an Egyptian fraction which is the sum of unit fractions
with odd denominators. Explore this conjecture using the algorithm that successively
adds the unit fraction with the least positive odd denominator g at each stage. (For
example, 2/7=1/54+ 1/13 + 1/115 4+ 1/10,465.)
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Programming Projects
Wiite programs using Maple, Mathematica, or a language of your choice to do the following.

% 1, List the moves in the tower of Hanoi puzzle (see Exercise 32). If you can, animate these
moves,

%% 2. Cover a 27 x 2" chessboard that is missing one square using L-shaped pieces (sce
Exercise 34).

3. Given a rational number p/q, express p/q as an Egyptian fraction using the algorithm
described in Exercise 35,

1.4 The Fibonacci Numbers

@f In his book Liber Abaci, written in 1202, the mathematician Fibonacci posed a problem
concerning the growth of the number of rabbits in a certain area. This problem can be
phrased as follows: A young pair of rabbits, one of each sex, is placed on an island.
Assuming that rabbits do not breed until they are two months old and after they are two
months old, each pair of rabbits produces another pair each month, how many pairs are
there after n months?

Let f, be the number of pairs of rabbits after » months. We have f; = 1 because
only the original pair is on the island after one month. As this pair does not breed during
the second month, £ = 1. To find the number of pairs after 7 months, add the number
on the island the previous month, f,_;, to the number of newborn pairs, which equals
f—2, because each newborn pair comes from a pair at least two months old, This leads
to the following definition.

@ Definition. The Fibonacci sequence is defined recursively by fi=1, fp =1, and
fo= fu_1+ fu_zforn = 3. The terms of this sequence are called the Fibonacci numbers.

The mathematician Edouard Lucas named this sequence after Fibonacci in the
nineteenth century when he established many of its properties. The answer to Fibonacei's
question is that there are £, rabbits on the island after n months,

FIBONACCI (c. 1180-1228) (short for filus Bonacci, son of Bonacci), also
known as Leonardo of Pisa, was bom in the Italian commercial center of Pisa.
Fibonacci was a merchant who traveled extensively throughout the Mideast,
where he came inte contact with mathematical works from the Arabic world.
In his Liber Abaci Fibonacci introduced Arabic notation for numerals and their
algorithms for arithmetic into the European world. It was in this book that his
famous rabbit problem appeared. Fibonacci also wrote Practicae geometriae,
a treatise on geometry and trigonometry, and Liber guadratorum, a book on
diophantine equations,
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Examining the initial terms of the Fibonacci sequence will be useful as we study
their properties.

Example 1.26, We compute the first ten Fibonacci nambers as follows:

hR=htH=1+1=2
fa=fA+H=2+1=3

fs=fat+tf=342=5

Je=Js+ f4=5+3=8

fi=fs+fs=8+5=13

fe=frt fe=13+8=21

Jo== fy+ f=21+13=34

fio=fo+ fa=34+21=55, <

We can define the value of fo =0, so that f, = f} + f;. We can also define f, where
n is a negative number so that the equality in the recursive definition is satisfied (see
Exercise 37.)

The Fibonacci numbers occur in an amazing variety of applications. For example,
in botany the number of spirals in plants with a pattern known as phyllotaxis is always
a Fibonacci number. They occur in the solution of a tremendous variety of counting
problems, such as counting the number of bit strings with no two consecutive 1s (see

[Ro(3]).

The Fibonacci numbers also satisfy an extremely large number of identities. For
example, we can easily find an identity for the sum of the first n consecutive Fibonacci
numbers.

Example 1.27. The sum of the first n Fibonacei numbers for 3 <n < 8 equals 1, 2, 4,
7. 12,20, 33, and 54. Looking at these numbers, we see that they are all just 1 less than
the Fibonacci number f, ;. This leads us to the conjecture that

ka=ﬁ1+2_ L.

k=1
Can we prove this identity for all positive integers 77

We will show, in two different ways, that this identity does hold for all integers n.
We provide two different demonstrations, to show that there is often more than one way
to prove that an identity is true.

First, we use the fact that f, = f,_+ f, , for n =2,3,... to see that f, =
Jey2 — fepr fork=1,2,3,. ... This means that

D= (fira— fern-
k=1 k=1
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We can easily evaluate this sum because it is telescoping. Using the formula for a
telescoping sum found in Section 1.2, we have

ka:fIH-Z —fHh=fap2a— L

k=1
This proves the result.

We can also prove this identity using mathematical induction. The basis step holds
because ZI{:I fr=1and this equals fi . —1=f—1=2—-1=1 The inductive
hypothesis is

n
Z Jo=foy2— L.
k=1

We must show that, under this assumption,

n+l

2 fie=Fusa— L
k=l
To prove this, note that by the inductive hypothesis we have

n+l n
kaﬂ( fk) + [t
k=1 k=1

=2 =D+ funr
= (fn+1 + fn+2) -1
= fura— 1. -«

The exercise set at the end of this section asks you {o prove many other identities of
the Fibonacci numbers.

How Fast Do the Fibonacci Numbers Grow!?

The following inequality, which shows that the Fibonacci numbers grow faster than a
geometric series with common ratio o = (1 + +/5)/2, will be used in Chapter 3.

Example 1.28. We can use the second principle of mathematical induction to prove
that f, > o 2 forn > 3where o = (1 -+ +/5)/2. The basis step consists of verifying this
inequality for n = 3 and n = 4. We have o < 2 = f3, so the theorem is true forn=3.
Since o2 = (3 + +/5)/2 < 3= fy, the theorem is true for n = 4.

The inductive hypothesis consists of assuming that ak=2 < £, for all integers k with
k <n.Because o = {1+ «/5)/2 is a solution of x2 — x — 1 =0, we have el=a+ 1
Hence

ot"_l — a?. . Oln—3 — (G.’ + 1) . anf3 — a,:t—Z 4 an—3_
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By the inductive hypothesis, we have the inequalities
Cfﬂ_2<ﬁp 0-’"_3<fn—1-

By adding these two inequalities, we conclude that

o< fut foo1= Jatre
This finishes the proof, -«

We conclude this section with an explicit formula for the nth Fibonacei number. We
will not provide a proof in the text, but Exercises 41 and 42 at the end of this section
outline how this formula can be found using linear homogeneous recurrence relations
and generating functions, respectively. Furthermore, Exercise 40 asks that you prove this
identity by showing that the terms satisfy the same recursive definition as the Fibonacci
nwmbers do, and Exercise 45 asks fora proof via mathematical induction, The advantage
of the first two approaches is that they can be used to find the formuls, while the second
two approaches cannot.

Theorem 1.7. Let n be a positive integer and let o = HT‘B and = %5 . Then the
nth Fibonacci number f, is given by

1 n__an
f;r—%(a’ ﬁ)

We have presented a few important results involving the Fibonacci numbers. There
is a vast literature concerning these numbers and their many applications to botany,
computer science, geography, physics, and other areas (see [Va89]). There is even a
scholarly journal, The Fibonacci Quarterly, devoted to their study.

1.4 Exercises

1. Find the following Fibonacei numbers.

a) fio ) fis e} fan
B fis 4} fig £) fas
2, Find each of the following Fibonacci numbers.
a) fiz c} fou &) fi2
b) fis d) fio 1y fae

. Prove that f, -+ f, = 2 £, ., whenever n is a positive integer.

. Prove that f, .3 — f, = 2§, whenever » is a positive integer,

. Prove that f,, = f"2 + 2 f,_1f; whenever n is a positive integer. (Recall that f}, = 0.)

. Prove that f,, s+ f,42 = 3f, whenever n is an integer with n > 2. (Recall that f; =0.)

=t e W

. Find and prove a simple formula for the sum of the first n Fibonacei numbers with odd
indices when # is a positive integer. That is, find a simple formula for f; 4+ f3+ -+ -+

Jan—1-
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10.
11.
12,

13.
14.
15

16.
17.

. Find and prove a simple formula for the sum of the first » Fibonacci numbers with even

indices when n is a positive integer. That is, find a simple formulafor f5 + f4+- -+ Jon

. Find and prove a simple formula for the expression f, — fo1 + faa — -+ (—Dtf

when » is a positive integer.

Prove that f5,,1 = fn%H + f; :2 whenever n is a positive integer.

Prove that f5, = fnz+i — _fna1 whenever n is a positive integer. (Recalt that f5 = 0.)

Prove that £, + fo1+ Feoo + 2 53+ 4 fu_a + 85+ 273 = 2"~ ! whenever
n is an integer with # > 3.

Prove that ZZ{:; j"}.2 = fl2 + f22 R fﬂz = f, fuy1 for every positive integer #.
Prove that f, 1 fp-1— fn2 = (—1)" for every positive integer .
Prove that f,. 1 f, — fu_1fu—2 = fan—1 for every positive integer n, n > 2.

Prove that f1fs + fofa+ - + fan-1fon = f2, if n is a positive integer,

Prove that f,4n = fufusr1 + fofm 1 whenever m and n are positive integers.

The Lucas numbers, named after Frangois-Eduoard-Anatole Lucas (see Chapter 7 for a
biography), are defined recursively by

Ly=L,+Llpa n=z 3

with L; = 1and L, = 3. They satisfy the same recurrence relation as the Fibonacci numbers,
but the two initial values are different.

18.
19,

20.

21.

22.

23.
24,

25,

26.

* 27,

28.

Find the firsi 12 Lucas numbers.

Find and prove a formula for the sum of the first n Lucas numbers when n is a positive
infeger.

Find and prove a formula for the sum of the first # Lucas numbers with odd indices when
n is a positive integer.

Find and prove a formula for the sum of the first # Lucas numbers with even indices
when n is a positive integer.

Prove that L% ~ L1l oy =5(=1" when n is an integer with # = 2.
Prove that L? 4+ L2 + .+ - + L2 = L, L, — 2 when n is an integer with n = 1.

Show that the rth Lucas number L, is the sum of the (n 4 1)stand (n — Dst Fibonacci
numbers, f,,and f,_, respectively.

Show that f, = f,L, for all integers n withn > 1, where f, is the nth Fibonacci number
and L, is the nth Lucas number. o

Prove that 5f,4; = L, + L, whenever » is a positive integer, f, is the nth Fibonacci
number, and L, is the nth Lucas number.

Provethat Ly, 4, = fraafon + frLy_1 wheneverm and i are positive integers with » > 1,
f,, is the nth Fibonacci number, and L, is the nth Lucas number.

Show that L,,, the rth Lucas number, is given by
Ln — a,ﬂ + ﬁ?l..
where o = (1 4 +/5)/2 and 8 = (1 — v/5)/2.
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The Zeckendorf representation of a positive integer is the unique expression of this integer
as the sum of distinct Fibonacci numbers, where no two of these Fibonacci numbers are
consecutive terms in the Fibonacci sequence and where the term f) = 1is not used (but the
term f; = 1 may be nsed.)

29.
* 30.
31
32,

33,

34,
35.

36.

37

3s.

39,

40.

Find the Zeckendorf representation of each of the integers 50, 85, 110, and 200.
Show that every positive integer has a unique Zeckendorf representation.

Show that f, < o™ L for every integer n with n > 2, where o = (1 + \/5)/2.

Show that
n n—1 n—72
(0)+( 1 )+( 2 )J"“'“f”“’

where 1 is a nonnegative integer and f, +1 18 the (1 -+ 1)st Fibonacei number. (See
Appendix B for a review of binomial coefficients. Here, the sum ends with the term

(1))

Prove that whenever n is a nonegative integer, 3% {*® : = fo,, where F; is the jth
& 2! j=t1J J P i J
Fibonacci number,

Let F = (} é) Show that F"! = (f"f:‘ fnfil) whenn e Zt.

By taking determinants of both sides of the result of Exercise 34, prove the identity in
Exercise 14.

Define the generalized Fibonacci numbers recursively by g, = a, g = b, and g, =
En—1+ 8§y o forn = 3. Show that g, = af,_, + bf,_, forn > 3.

Give a recursive definition of the Fibonacci number f, when # is a negative integer. Use
your definition to find f, forn = —1, -2, =3, ..., —I0.

Use the results of Exercise 37 to formulate a conjecture that relates the values of o
and f, when n is a positive integer. Prove this conjecture using mathematical induction,

What is wrong with the claim that an 8 x 8 square ¢an be broken into pieces that can be
reassembled to form a 5 x I3 rectangle as shown? :

8
3 3
5
3 3
5 g |3 3
Y
CRNPYRE

(Hint: Lock at the identity in Exercise 14. Where is the extra square unit?)

Show that if a, = %(a" — A", where & = (1 + +/5)/2 and £ =(1—+/5)/2, then
Ay =dy_1 +a,_zand a; = a; = 1. Conclude that f, = a,,, where £, is the nth Fibonacci
number,
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A linear homogeneous recurrence relation of degree 2 with constant coefficients is an equation
of the form

Oy = Cplp1 F Colly_2,

where ¢; and ¢, are real numbers with ¢, # 0. It is not difficult to show (see [Ro03]) that if
the equation rl — cyr — ¢; = 0 has two distinct roots ry and ry, then the sequence {¢,] iz a
solution of the linear homogeneous recurrence relation @, = €1@,_1 + €28, if and only if
a, = Cy} + Cyry forn=0,1,2,..., whete Cy and C; are constants. The vatues of these
constants can be found using the two initial terms of the sequence.

41, Find an explicit formula for f,, proving Theorem 1.7, by solving the recurrence relation
£y = fuet + fu_p form =2,3,... with initial conditions Jo=0and fi=1

The generating function for the sequence dg, @y, . » ., . - - - is the infinite series

G{x) = Z akxk.
=0

42, Use the generating function G(x) = 3 poq fex® where f; is the kth Fibonacci number
to find an explicit formula for f;, proving Theorem 1.7. (Hint: Use the fact that f, =
fet+ frgfork=2,3,... to show that G(x) — xG{x) — x2G(x) = x. Solve this to
show that G(x) =x/(1 —x — x?) and then write G{x) in terms of partial fractions, as
is done in calculus.) (See [Ro03] for information on using generating Functions.)

43, Find an explicit formula for the Lucas numbers using the technique of Exercise 41.
44. Find an explicit formula for the Lucas numbers using the technique of Exercise 42.

45, Use mathematical induction to prove Theorem 1.7.

Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Find the Fibonacei numbers fipg. f200. and fs0-
2. Find the Lucas numbers L g, Lagg, and Lsgo.

3. A surprising theorem states that the Fibonacci numbers are the positive values of the
polynomial 2xy* + x2y* — 2x3y% — y5 — x*y 4 2y as x and y range over all nonnegative
integers. Verify this conjecture for the values of x and y where x and y are nonnegative
integers with x + y < 100,

Programming Projects
Write programs using Maple, Mathematica, or a language of your choice to do the following,

1. Given a pesitive integer n, find the first n terms of the Fibonacci sequence.

2. Given a positive integer n, find the first n terms of the Lucas sequence.
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1.5 Divisibility
The concept of the divisibility of one integer by another is central in number theory.
Definition, If g and b are integers with a # 0, we say that a divides b if there is an

integer ¢ such that b = ac. If a divides b, we also say that a is a divisor or factor of b
and that & is a multiple of a.

If a divides b we write a | b, and if a does not divide b we write a f b. (Be careful
not to confuse the notations a | b, which denotes that a divides &, and a/b, which is the
quotient obtained when a is divided by £.)

Example 1.29. The following statements illustrate the concept of the divisibility of
integers: 13| 182, —5(30, 17289, 6 f 44,7 f 50, 3|33, and 17| 0. «

Example 1.30. The divisors of 6 are 1, £2, 43, 4-6. The divisors of 17 are £1, +17.
The divisors of 100 are &1, 2, 44, 45, £10, 20, £25, £50, 100, <

In subsequent chapters, we will need some simple properties of divisibility, which
we now state and prove.
Theorem 1.8. Ifa, b, and ¢ are integers witha | band b | ¢, then a | c.
Proof. Because a | b and b | ¢, there are integers ¢ and f such that ae = b and bf =c.
Hence, ¢ = bf = (ae) f = a(ef), and we conclude that a | c. -

Example 1.31. Because 11|66 and 66 | 198, Theorem 1.8 tells us that 11| 198. <

Theorem 1.9. ifa, b, m, and n are integers, and if ¢ { @ and ¢ | b, then ¢ | (ma -+ nb).

Proof. Because ¢ | a and ¢ | b, there are integers e and f such that @ = ce and b = ¢f.
Bence, ma +nb =mce + ncf = c(me + nf). Consequently, we see that ¢ | (ma + nb).
|

Example 1.32. As3|21and 3|33, Theorem 1.9 tells us that 3 divides
5:21-3.33=105—-99=¢. <

The following theorem states an important fact about division.

Theorem 1.10. The Division Algorithm. 1f a and b are integers such that b > 0, then
there are unique integers g and r such that e = bg +r with0 <r < b. n

In the equation given in the division algorithm, we call ¢ the quotient and r the
remainder. We also call a the dividend and b the divisor. (Note: We use the traditional
name for this theorem even though the division algorithm is not actually an algorithm.
‘We discuss algorithins in Section 2.2.)
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We note that a is divisible by b if and only if the remainder in the division algorithm
is 0. Before we prove the division algorithm, consider the following examples.

Example 1.33. Ha=133andb=21,theng=6andr =7, because 133=21-6+17.
Likewise, if @ = —50 and b =8, then g = —7 and r = 6, because 50 =8(-7) +-6. «

We now prove the division algorithm using the well-ordering property.

Proof. Consider the set § of all integers of the form a — bk where k is an integer, that
is, § = {a — bk | k € Z). Let T be the set of all nonnegative integers in S. T is nonempty,
because @ — bk is positive whenever & is an integer with k < a/b.

By the well-ordering property, T has a least element r = a — bq. (These are the
values for ¢ and r specified in the theorem.) We know that r > 0 by construction, and
itiseasytoseethatr < b. Ifr>bthenr>r—b=a—-bg—-b=a —blg+ 1 =0,
which contradicts the choice of r = @ — bg as the least nonnegative integer of the form
a—bk. Hence D <r < b,

To show that these values for g and r are unique, assume that we have two equations
a=bgy +r anda = bg, -+ ry, with0 < r) < band 0 < r; < b. By subtracting the second
of these equations from the first, we find that

0=>b(gy— g+ —12)
Hence, we see that
ry —ry=b{gq — @)
This tells us that b divides r, — ;. Because 0 < r; < b and 0 <rp < b, we have —b <
ry — 1y < b. Hence, b can divide r, — r) only if ry — v = 0 or, in other words, ifry=rg.
Because by + 1 = bgy + rp and r; = ry, we also see that g = ¢,. This shows that the
quotient g and the remainder r are unique. n

We now use the greatest integer function (defined in Section 1.1) to give explicit
formulas for the quotient and remainder in the division algorithm. Because the quotient
g is the largest integer such that bg < a, and r == a - bg, it follows that

(1L.4) g=la/bl, r=a-bla/bl

The following examples display the quotient and remainder of a division.

Example 1.34. Leta=1028 and b=34. Thena =bg +r with0 =r < b, where
g = [1028/34] = 30 and r = 1028 — [1028/34] - 34 = 1028 — 30 34 =8, «

Example 1.35. Let g = —380 and b = 75. Then a = bq +r with 0 <r < b, where
g =[~380/75]= —6 and r = —380 — [~380/75}- 75 = =380 — (—6)75="10. «

We can use Equation (1.4) to prove a useful property of the greatest integer function.

Example 1.36. Show that if » is a positive integer, then [x/n]= [[x]/n} whenever x
is a real number. To prove this identity, suppose that [x] = #1. By the division algorithm,
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we have integers ¢ and r such that m = ng + r, where 0 < r <n — 1. By Equation (1.4),
we have g = [[x]/n]. Because [x] < x < [x]+ 1, it follows that x = [x]+ ¢, where
0=e < L We see that [x/n] = [([x]+ €)/n]=[(m + €)/n) = [({ng -+ r) + €)/n] =
[g+(r+e)/nl Becanse 0<e < |, wehave 0 <r +¢ < (n — 1) + 1 = n. It follows
that [x/nl=[gl] «

Given a positive integer d, we can classify integers according to their remainders
when divided by d. For example, with d = 2, we see from the division algorithm that
every integer when divided by 2 leaves a remainder of either 0 or 1. This leads to the
following definition of some common terminology.

Definition. If the remainder when n is divided by 2 is 0, then n = 2k for some integer
k, and we say that n is even, whereas if the remainder when n is divided by 2 is 1, then
n =2k + 1for some integer k, and we say that n is odd.

Similarly, when d == 4, we see from the division algorithm that when an integer n is
divided by 4, the remainder is either 0, 1, 2, or 3. Hence, every integer is of the form 4k,
4k + 1, 4k + 2, or 4k 4 3, where £ is a positive integer.

We will pursue these matters further in Chapter 4.

1.5 Exercises

1. Show that 3|99, 5] 145, 7| 343, and 888 0.
2. Show that 1001 is divisible by 7, by 11, and by 13.
3. Decide which of the following integers are divisible by 7.

a) 0 d) 123321
b) 707 e} —285714
¢}y 1717 f)y —430597
4. Decide which of the following integers are divisible by 22.
a0 d) 192544
b) 444 e) —32516
c) 1716 fy —195518
5. Find the quotient and remainder in the division algorithm, with divisor 17 and dividend
a) 100. c)y —d4,
b) 289, d) —100.

6. What can you conclude if @ and b are nonzero integers such that a | b and b | a?

7. Show that if a, b, ¢, and d are integers with a and ¢ nonzero, such that ¢ | b and ¢ | d,

then ac | bd.
8. Are there integers a , b, and ¢ such thata | be, buta f band a f ¢?

9. Show that if a, b, and ¢ # 0 are integ_ers, then a | b if and only if ac | be.
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10.
11.
12.

13.

14,

15.

16.

17

18.

19.

20.
21.

22,

23.
24.
25.

26,

27.

Show that if o and b are positive integers and a | b, thena < b.
Show that if @ and b are integers such that a | b, then a* | b* for every positive integer k.

Show that the sum of two even or of two odd integers is even, whereas the sum of an odd
and an even integer is odd.

Show that the product of two odd integers is odd, whereas the product of two integers is
even if either of the integers is even.

Show that if @ and b are odd positive integers and b [ a, then there are integers s and ¢
such that @ = bs ¢, where risodd and | 1 |< &.

When the integer a is divided by the integer b, where b > 0, the division algorithm gives
a quotient of ¢ and a remainder of r. Show that if b f a, when —a is divided by &, the
division algorithm gives a quotient of —(g + 1) and a remainder of b — r;, whereas if
b | @, the quotient is -—g and the remainder is 0.

Show that if @, b, and ¢ are integers with b > 0 and ¢ > 0, such that when a is divided
by b the quotient is ¢ and the remainder isr, and when g is divided by ¢ the quotient is #

and the remainder is s, then when a is divided by bc, the quotient is # and the remainder
isbs+r.

a) Extend the division algorithm by allowing negative divisors. In particular, show that
whenever a and b # 0 are integers, there are unique integers g and r such that
a=hbg+r,where 0 <r <|bi.

b) Find the remainder when 17 is divided by —7.

Show that if a and b are positive integers, then there are unique integers ¢ and r such

that @ = bg + 7, where —b/2 < r < b/2.

Show that if m and n > O are integers, then

[,,1 + 1] { [’;’f] if m s kn — 1 for some integer k;

" [%] +41if m = kn — 1 for some integer k.

Show that the integer n is even if and only if # — 2[r/2]= 0.

Show that the number of positive integers less than or equal to x, where x is a positive
real number, that are divisible by the positive integer d equals [x/d].

Find the number of positive integers not exceeding 1000 that are divisible by 5, by 25,
by 123, and by 625,

How many integers between 100 and 1000 are divisible by 77 by 49?7
Find the number of positive integers not exceeding 1000 that are not divisible by 3 or 5.

Find the number of positive integers not exceeding 1000 that are not divisible by 3,5,
or 7.

Find the number of positive integers not exceeding 1000 that are divisible by 3 but not
by 4.

In 1999, to mail a first-class letter in the United States of America it cost 33 cents for
the first ounce and 22 cents for each additional ounce or fraction thereof, Find a formula
involving the greatest integer function for the cost of mailing a letter in 1999. Could
it possibly have cost $1.45 or $2.31 to mail a first-class letter in the United States of
America in 19997



28.
29,

30.
31
32,
33.
34.

35,
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Show that if @ is an integer, then 3 divides a3 — 4.

Show that the product of two integers of the form 4k + 1is again of this form, whereas
the product of two integers of the form 4k + 3 is of the form 4k + 1.

Show that the square of every odd integer is of the form 8k + 1.

Show that the fourth power of every odd integer is of the form 16k 4 1.

Show that the product of two integers of the form 6% + 5 is of the form 6% + 1.
Show that the product of any three consecutive integers is divisible by 6.

Use mathematical induction to show that #° — r is divisible by 5 for every positive
integer n.

Use mathematical induction fo show that the sum of the cubes of three consecutive
integers is divisible by 9,

In Exercises 36-40, let f, denote the nth Fibonacci number.

36.

Show that f,, is even if and only if » is divisible by 3,

37, Show that £, is divisible by 3 if and only if n is divisible by 4.

38.
39,

* 40,

Show that £, is divisible by 4 if and only if » is divisible by 6.

Show that f, =35, 4+ 3f,_s whenever n is a positive integer with # > 5. Use this
result to show that f,, is divisible by 5 whenever n is divisible by 5.

Show that £, ., = fi fur1 + fru_1 S, Whenever m and r are positive integers with m > 1.
Use this result to show that f, | f,, when m and n are positive integers with n | .

@f Let # be a positive integer. We define

nf2 if n is even;

rem= { Gn41/2 ifnisodd.

We then form the sequence obtained by iterating T: n, T'(n), T(T(n)), T(T(T(n))),

. For instance, starting with n =7, we have 7,11, 17,26,13,20,10,5,8, 4,2, 1, 2,

1,2,1,.... A well-known conjecture, sometimes called the Collatz conjecture, asserts that
the sequence obtained by iterating T always reaches the integer 1 no matter which positive
integer n begins the sequence.

41.
42,

43,

44,

* 45,

Find the sequence cbtained by iterating T starting with n = 39.

Show that the sequence obtained by iterating T starting with n = (2% — 1)/3, where k
is a positive integer greater than 1, always reaches the integer 1.

Show that the Collatz conjecture is true if it can be shown that for every positive integer
1 with n > 2 there is a term in the sequence obtained by iterating T tha is less than n.

Verify that there is a term in the sequence obtained by iterating T, starting with the
positive integer , that is less than n for all positive integers » with 2 < n < 100, (Hint:
Begin by considering sets of positive integers for which it is easy to show that this is
true.)

Show that [(2 + +/3)"] is odd whenever n is a nonnegative integer,
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1.5 Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Verify the Collatz conjecture described in the preamble to Exercise 41 for all integers n
not exceeding 10,000

2. Using numerical evidence, what sort of conjectures can you make concerning the number
of iterations needed before the sequence of iterations T (1) reaches 1, where 1 is a given
positive integer?

3, Using numerical evidence, make conjectures about the divisibility of Fibonacci numbers
by 7, by 8, by 9, by 11, by 13, and so on.

Programming Projects

Write programs using Maple, Mathematica, or a language of your choice to do the following.
1. Decide whether an integer is divisible by a given integer.
2. Find the quotient and remainder in the division algorithm.

3. Find the quotient, remainder, and sign in the modified division algorithm given in
Exercise 18.

4, Compute the terms of the sequence n, Ty, TTWY), T(THEN), . .- for a given
positive integer », as defined in the preamble to Exercise 41.
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Introduction

The way in which integers are represented has a major impact on how easily people
and computers can do arithmetic with these integers. The purpose of this chapter is to
explain how integers are represented using base b expansions, and how basic arithmetic
operations can be carried out using these expansions. In particular, we will show that
when b is a positive integer, every positive integer has a unique base b expansion. For
example, when b is 10, we have the decimal expansion of an integer; when b is 2, we
have the binary expansion of this integer; and when b is 16, we have the hexadecimal
expansion, We will describe a procedure for finding the base & expansion of an integer,
and describe the basic algorithms used to carry out integer arithmetic with base b
expansions. Finally, after introducing big-0 notation, we will analyze the computational
complexity of these basic operations in terms of big-O estimates of the number of bit
operations that they use.

Representations of Integers

In daily life, we use decimal notation to represent integers. We write out numbers using
digits to represent powers of ten. For instance, when we write out the integer 37465, we
mean

3.10° +7-10°4+4.10° +6- 10+ 5.

Decimal notation is an example of a positional number system, in which the position
a digit occupies in a representation determines the quantity it represents. Throughout
ancient and modern history, many other notations for integers have been nsed. For
example, Babylonian mathematicians who lived more than 3000 years ago expressed
integers using sixty as a base. The Romans employed Roman numerals, which are used

43
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even today to represent years. The ancient Mayans used a positional notation with twenty
as a base. Many other systems of integer notation have been invented and used over time.

There is no special reason for using ten as the base in a fixed positional number
system, other than that we have ten fingers. As we will see, any positive integer can
be used as a base. With the invention and proliferation of computers, bases other than
ten have become increasingly important. In particular, base 2, base 8, and base 16
representations of integers are used extensively by computers for various purposes.

In this section, we will demonstrate that no matter which positive integer b is chosen
as a base, every positive integer can be expressed uniquely in base & notation. In Section
2.2, we will show how these expansions can be used to do arithmetic with integers.
(Sce the exercise set at the end of this section to learn about one’s and fwo’s complement
notations, which are used by computers to represent both positive and negative integers.)

For more information about the fascinating history of positional number systems, the
reader is referred to [Or88] or [Kn97}, where extensive surveys and numerous references
may be found.

We now show that every positive integer greater than 1 may be used as a base.

Theorem 2.1. Let b be a positive integer with b > 1. Then every positive integer # can
be written uniquely in the form

n= akbk + ak,lbk“L + -+ ab +ay,

where k is a nonnegative integer, a; is an integer with0 <a; < b—1lforj=0,1,...,k
and the initial coetficient a; # 0.

Proof. 'We obtain an expression of the desired type by successively applying the division
algorithm in the following way. We first divide # by b to obtain

n=bgg+ayp O0=aq=<b-1
If gy # 0, we continue by dividing g by b to find that

go=bq +a, O0<a=<b-1
We continue this process to obtain

q1=qu+a2, OSazsb—i,
@ =bgy+as, O0<az=b-1, ’

Gra=hg_ita_;, 0@ <b-1
qk41=b-0+ak, 0§ak_<_b—l

The last step of the process occurs when a quotient of 0 is obtained. To see this, first note
that the sequence of quotients satisfies

n=gp>qg =gy >0
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Because the sequence g, 41, g3, - . . is a decreasing sequence of nonnegative integers that
continues as long as its terms are positive, there are at most g terms in this sequence,
and the last term equals 0. '

From the first equation above, we find that
n = bgg + ag.
We next replace g, using the second equation, to obtain
n=>blbg +a)+ay= bqu +ah + ay.
Successively substituting for g, q,, . . ., gx_;, We have

n="bq, +ab® + aib + ag,

=g g b @ B ab +ag,
=bq +a b+t aptag
= akb"‘ + ak_lbk_l + -+ mb+ag,

where 0 <a; <b—1for j=0,1,...,k and a; # 0, given that ap = g1 15 the last
nonzero quotient. Consequently, we have found an expansion of the desired type.

To see that the expansion is unique, assume that we have two such expansions equal
to n, that is,

n= akbch -+ akﬁlbk”l +o-tab4ay
= ckbk + ck_lbk—l + b+ ey,

where 0 < a; < b and 0 < ¢; < b (and where, if necessary, we have added initial terms
with zero coefficients to one of the expansions to have the number of terms agree).
Subtracting one expansion from the other, we have

(ak — Ck)bk + (ak—l - Ck,I)bk—l +-- 4+ (a1 - Cl)b + ((10 —cg) = 0.

If the two expansions are different, there is a smallest integer j, 0 < 7 <k, such that
a; # c;. Hence,

b ((ap — b7 4. + @41~ cjp)b + (a5 — )} =0,
5o that
(ak—c‘k)bk_j-{"' . ‘+(aj+1—cj+1)b+(aj —CJ,-):O.

j—cpwe obtain

Solving for a
CIJ' —Cj = (ck—ak)bk_j—l- .. ‘+(Cj+! —Gj+1)b

=b((ex —ab* T+ (e —aj4D).
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Hence, we see that
b { (aj - C'j).

Butbecause 0 <a; <band0 <¢; < b, we know that —b < a; —¢; <b. Consequently,
bila;—cj) impliesthata; =c¢;. T his contradicts the assumption that the two expansions

are different. We conclude that our base b expansion of » is unique. N

For b = 2, we see by Theorem 2.1 that the following corollary holds.

Corollary 2.1.1. Every positive integer may be represented as the sum of distinct
powers of 2. ]

Proof Let n be a positive integer. From Theorem 2.1 with b =2, we know that
ap 2

n=a2"+ ak_IQL"i 4+ -+ 4 a2 + ap, where each q; is either 0 or 1, Hence, every

positive integer is the sum of distinct powers of 2. [

In the expansions described in Theorem 2.1, b is called the base or radix of the
expansion. We call base 10 notation, our conventional way of writing integers, decimal
notation. Base 2 expansions are called binary expansions, base 8 expansions are called
octal expansions, and base 16 expansions are called hexadecimal, or hex for short, The
coefficients a;; are called the digits of the expansion. Binary digits are called bits (binary
digits) in computer terminology.

To distinguish representations of integers with different bases, we use a special
notation. We write {aya;_1 . . - @16g), to represent the number apb* + ak_lb"‘*k 4
ab + ap.

Example 2.1. To illustrate base b notation, note that (236)7 =2+ 4+3.74+6=125
and (10010011, =127+ 1.2* + 1.2/ +1=147. «

The proof of Theorem 2.1 provides a method of finding the base & expansion
(apay_1 - - - @1ag)p Of any positive integer n. Specifically, to find the base b expansion
of n, we first divide n by b. The remainder is the digit ap. Then, we divide the quotient
[n/b] = gqq by b. The remainder is the digit a;. We continue this process, successively
dividing the quotient obtained by b, to obtain the digits in the base b expansion of n.
The process stops once a quotient of { is obtained. In other words, to find the base b
expansion of 7, we perform the division algorithm repeatedly, replacing the dividend
each time with the quotient, and stop when we come toa quotient that is 0. We then read
up the list of remainders to find the base b expansion. We illustrate this procedure in
Example 2.2,

Example 2.2. To find the base 2 expansion of 1864, we use the division algorithm
successively:
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1864=2.932 +0,

032=2-466+0,
466 =2-233+0,
233=2-116+1,
. 116 =258 40,
58=2.294+0,
29=2.-14+1,
14=2.74+0,
T=2.-341,
3=2.14+1,
1=2.0+1,

To obtain the base 2 expansion of 1864, we simply take the remainders of these divisions.
This shows that (1864) 1y = (11101001000),. «

Computers represent numbers internally by using a series of “switches” that may
be either “on” or “off.” (This may be done mechanically, using magnetic tape, electrical
switches, or by other means.) Hence, we have two possible states for each switch, We can
use “on” to represent the digit 1and “off” to represent the digit 0; this is why computers
use binary expansions to represent integers internally.

Computers use base 8 or base 16 for display purposes. In base 16 (hexadecimal)
notation there are 16 digits, usually denoted by 0, 1,2, 3,4,5,6,7,8,9, A,B,C,D,E,F,
The letters A, B, C, D, E, and F are used to represent the digits that correspond to 10, 11,
12, 13, 14, and 15 (written in decimal notation), The following example demonstrates
the conversion from hexadecimal to decimal notation.

Example 2.3. To convert (A35B0F) 4 from hexadecimal to decimal notation, we write

(A35BO0F);5=10-16"+3.16*+5.16° +11- 162+ 0. 16+ 15
= (10705679) ;5. <

A simple conversion is possible between binary and hexadecimal notation. We can
write each hex digit as a block of four binary digits according to the correspondences
given in Table 2.1.

Example 24. An example of conversion from hex to binary is (2FB3)i =
(1011111011001 1),. Each hex digit is converted to a block of four binary digits (the
initial zeros in the initial block (0010), corresponding to the digit (2)¢ are omitted).

To convert from binary to hex, consider (11110111101001),. We break this into
blocks of four, starting from the right. The blocks are, from right to left, 1001, 1110,
1101, and 0011 (with two initial zeros added). Translating each block to hex, we obtain
(3DE9) 4. -«
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Hex Binary Hex Binary

Dvigit | Digits Digit | Digits
] 0000 8 1600
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 C 1100
5 Wyl D 111
6 0110 E 1110
7 0111 F 1111

Table 2.1 Conversion from hex digits to blocks of binary digits.

We note that a conversion between two different bases is as easy as binary—hex

conversion whenever one of the bases is a power of the other,

2.1 Exercises
1.

Convert (1999), from decimal to base 7 notation. Convert (6105); from base 7 to
decimal notation.

. Convert (89156) ;4 from decimal to base 8 notation. Convert (706113)3 from base 8 to

decimal notation.

. Convert (10101111), from binary to decimal notation and (999) 1, from decimal to binary

notation.

. Convert (101001000), from binary to decimal notation and (1984}, from decimal to

binary notation.

5. Convert (1000111 10101‘)2 and (11101001110), from binary to hexadecimal.
6. Convert (ABCDEF),4, (DEFACED) 4, and (JA0B),¢ from hexadecimal to binary.

7. Explain why we really are using base 1000 notation when we break large decimal integers

into blocks of three digits, separated by commas.

. Show that if b is a negative integer less than —1, then every nonzero integer n can be

uniquely written in the form )
n= Gkbk -+ (Ik_tbk_l +- 4 a]_b + ag.

where g, #0and0 < a; < | b|for j =0, 1,2,...,k We write n = (@z8g..1 - - - 0190}
Jjust as we do for positive bases.

. Find the decimal representation of (161001)_, and (12012} _a.
10.
11.

Find the base —2 representations of the decimal numbers —7, —17, and 61.

Show that any weight not exceeding 2% -~ 1 may be measured using weights of
1,2,2%,...,2%! when all the weights are placed in one pan.
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12. Show that every nonzero integer can be uniquely represented in the form
ek?;j‘ + Ek_13k_1 + R €I3 + g

where e;=~—1,0,0r1for j =0,1,2,...,k and ¢ £ 0. This expansion is called a

balanced ternary expansion,
13. Use Exercise 12 to show that any weight not exceeding (3* — 1)/2 may be measured
using weights of 1,3,3%, ..., 37!, when the weights may be placed in either pan.

14, Explain how to convert from base 3 to base 9 notation, and from base 9 to base 3 notation,

15." Explain how to convert from base r to base 7" notation, and from base " to base 7
notation, when r > 1 and n are positive integers.

16. Show thatif n = (ayq;..; . .. a1ap)s, then the quotient and remainder when » is divided
by b/ are g = (may_; ... a;), and r = (aj_1...aap)y, respectively.

17. If the base b expansion of n is # = (aqza;_; . . . @jay),, what is the base b expansion of
b"n?

(One’s compiement representations of integers are used to simplify computer arithrnetic. To
represent positive and negative integers with absolute value less than 2, a total of n -+ 1 bits
is used.

The leftmost bit is used to represent the sign. A 0 in this position is used for positive
integers and a 1 in this position is used for negative integers.

For positive integers, the remaining bits are identical to the binary expansion of the
integer. For negative integers, the remaining bits are obtained by first finding the binary
expansion of the absolute value of the integer, and then taking the complement of each of
these bits, where the complement of a 1 is a 0 and the complement of a O is a 1.

18, Find the one’s complement representations, using bit strings of length six, of the follow-
ing integers.

ay 22 ¢y —7
b) 31 d)y—19

19. What integer does each of the following one’s complement representations of length five

represent?

a) 11001 ¢) 10001
b) 01101 dy 1111t

20. How is the one’s complement representation of —m obtained from the one’s complement

of m, when bit strings of length » are used?

21. Show that if m is an integer with one’s complement representation @, _1a, 5 . . . a,dg,
n—2

thenm = —a, ;"1 - 1) + 31" a,2".
Tiwo's complement representations of integers also are used to simplify computer arithmetic
{in fact, they are used much more commonly than one’s complement representations). To
represent an integer x with 2"~ < x < 27~! _ {_j, bits are used.

The leftmost bit represents the sign, with a 0 used for positive integers and a 1 for negative
integers.
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For a positive integer, the remaining n — 1 bits are identical to the binary expansion of

the integer. For a negative infeger, the remaining bits are the bits of the binary expansion of
2n—l Xl

22.

23.

24,

25,

26.

27.

Find the two’s complement representations, using bit strings of length six, of the integers
in Exercise 18.

What integers do the representations in Exercise 19 represent if each is the two’s com-
plement representation of an integer?

Show that if n is an integer with two’s complement representation a, 14,3 . - - 41ap,
m n—-1 n—2 i
then m == —a,_y- 2" 4 D 05 @20

How is the two's complement representation of —m obtained from the two's complement
representation of s, when bit strings of length n arc used?

How can the two’s complement representation of an integer be found from its one’s
complement representation?

Sometimes integers are encoded by using four-digit binary expansions to represent each
decimal digit. This produces the binary coded decimal form of the integer. For instance,
791 is encoded in this way by 011110010001, How many bits are required to represent
a number with n decimal digits using this type of encoding?

A Cantor expansion of a positive integer n is a sum

n=apml 4 ay_m— D+ b a2+ ag b

where each a; is an integer with0 <a; < j and a,, # 0.

28.
* 29,

Find Cantor expansions of 14, 56, and 384,

Show that every positive integer has a unique Cantor expansion. (Hint: For each positive
integer n there is a positive integer m such that m! <n < (m + D! For a,, take the
quotient from the division algorithm when n is divided by !, then iterate.)

The Chinese game of nim is played as follows. There are several piles of matches, each
containing an arbitrary number of matches at the start of the game. To make a move a player
removes one or more matches from one of the piles. The players take turns, and the player
who removes the last match wins the game.

A winning position is an arrangement of matches in piles such thatif a player can move

to this position, then (no matter what the second player does) the first player can continue to
play in a way that will win the game. An example is the position where there are two piles,
each containing one match; this is a winning position, because the second player must remove
a match, leaving the first player the opportunity to win by removing the last match.

30.

31.

Show that the position in nim where there are two piles, each with two matches, is a
winning position.

For each arrangement of matches into piles, write the number of matches in each pile in
binary notation, and then line up the digits of these numbers into columns (adding initial
zeros where necessary). Show that a position is a winning one if and onty if the number
of Is in each column is even. (For example: Three piles of 3, 4, and 7 give

p— - O
O =
[ e G
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where each column has exactly two 1s.) (Hint: Show that any move from a winning
position produces a nonwinning one. Show that there is a move from any nonwinning
position to a winning one.)

Let @ be an integer with a four-digit decimal expansion, where not all digits are the same. Let
a’ be the integer with a decimal expansion obtained by writing the digits of 4 in descending
order, and let a” be the integer with a decimal expansion obtained by writing the digits
of a in ascending order. Define T'(a) = o’ — a”. For instance, T(7318) = 8731 — 1378 =
7353,

# 32, Show that the only integer with a four-digit decimal expansion (where not all digits are
the same) such that T'(a) = a isa = 6174. The integer 6174 is called Kaprekar’s constant,
after the Indian mathematician D. R. Kaprekar, because it is the only integer with this

property.

*% 33, a) Show that if a is a positive integer with a four-digit decimal expansion where not all
digits are the same, then the sequence a, T (a), T(T{a)), T(T(T{a))), .. ., obtained by
iterating T, eventually reaches the integer 6174,

b) Determine the maximum number of steps required for the sequence defined in part
(a) to reach 6174.

Let & be a positive integer and let ¢ be an integer with a four-digit base b expansion,
with not all digits the same. Define Tj(a) = a’ — a”, where 4’ is the integer with base b
expansion obtained by writing the base b digits of @ in descending order, and a” is the
integer with base b expansion obtained by writing the base b digits of a in ascending
order,

*% 34, Let b =35, Find the unique integer a; with a four-digit base 5 expansion such that
T5(ay)} = ap. Show that this integer «; is a Kaprekar constant for base 5 in other words,
that a, T{a), T (T (a)), T(T(T(a))}, . . . eventually reaches aq, whenever a is an integer
with a four-digit base 5 expansion where not ali digits are the same,

# 35, Show that no Kaprekar constant exists for four-digit numbers to the base 6.

* 36. Determine whether there is a Kaprekar constant for three-digit integers to the base 10.
Prove that your answer is correct,

D.R.KAPREKAR (1905-1986) was born in Dahanu, India, and was interested
in numbers even as & small child. He received his secondary school education
in Thana and studied at Ferguson College in Poona. Kaprekar attended the
University of Bombay, receiving his bachelor’s degree in 1929. From 1930
until his retirement in 1962, he worked as a schoolteacher in Devlali, India.
Kaprekar discovered many interesting properties in recreational number theory.
He published extensively, writing about such topics as recurring decimals,
magic squares, and integers with special properties.
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Computational and Programming Exercises

Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

- L

Find the binary, octal, and hexadecimal expansions of each of the following integers.

a) 9876543210 by 1111111111 ¢} 10000000001

. Find the decimal expansion of each of the following integers.

a) (1010101010101), b) (765432101234567);  c¢) (ABBAFADACABA) 4

. Evaluate each of the following sums, expressing your answer in the same base used to

represent the summands.

a) (11011011011011011), -+ (1001001001001001001001),
b) (12345670123456)g + (765432107654321)5

c) (123456789ABCD) (s + (BABACACADADA) 6

. Find the Cantor expansions of the integers 100,000, 10,000,000, and 1,000,000,000. (See

the preamble to Exercise 28 for the definition of Cantor expansions.)

. Verify the result described in Exercise 33 for several different four-digit integers, in

which not all digits are the same.

. Use numerical evidence to make conjectures about the behavior of the sequence

a, T(a), T{T(a)), ... where a is a five-digit integer in base 10 notation in which not all
digits are the same, and T () is defined as in the preamble to Exercise 32.

. Explore the behavior for different bases b of the sequence a, T{a), T{T (@), . .. where @

is a three-digit integer in base b notation. What conjectures can you make? Repeat your
exploration using four-digit and then five-digit integers in base b notation.

Programming Projects

Write programs using Maple, Mathematica, or a language of your choice to do the following.

1.

Find the binary expansion of an integer from the decimal expansion of this integer, and
vice versa.

. Convert from base b, notation to base b, notation, where b, and b, are arbitrary positive

integers greater than I.

3. Convert from binary notation to hexadecimal notation, and vice versa,

4. Find the base {(—2) notation of an integer from its decimal notation (see Exercise 8).-

5. Find the balanced ternary expansion of an integer from its decimal expansion (see

Exercise 12).

. Find the Cantor expansion of an integer from its decimal expansion (see the preamble

to Exercise 28).

7. Play a winning strategy in the game of nim (see the preamble to Exercise 30).
8. Investigate the sequence a, T{a), T{T (@), T(T(T @h}).. .. (defined in the preamble to

Exercise 32), where a is a positive integer, to discover the minimum number of iterations
required to reach 6174,
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2.2 Computer Operations with Integers

Before computers were invented, mathematicians did computations either by hand or
by using mechanical devices. Either way, they were only able to work with integers of
rather limited size. Many number theoretic problems, such as factoring and primality
testing, require computations with integers of as many as 100 or even 200 digits, In this
section, we will study some of the basic algorithms for doing computer arithmetic. In
the following section, we will study the number of basic computer operations required
to carry out these algorithms.

We have mentioned that computers internally represent numbers using bits, or binary
digits. Computers have a built-in limit on the size of integers that can be used in machine
arithmetic, This upper limit is called the word size, which we denofe by w. The word size
is usually a power of 2, such as 23* for Pentium machines or 235, although sometimes
the word size is a power of 10.

To do arithmetic with integers larger than the word size, it is necessary to devote
more than one word fo each integer. To store an integer n > w, we express # in base w
notation, and for each digit of this expansion we use one computer word. For instance, if
the word size is 2%, using ten computer words we can store integers as large as 2399 — 1,
since integers less than 2°%° have no more than ten digits in their base 235 expansions.
Also note that to find the base 23° expansion of an integer, we need only group together
blocks of 35 bits.

The first step in discussing computer arithmetic with large integers is to describe
how the basic arithmetic operations are methodically performed.

We will describe the classical methods for performing the basic arithmetic oper-
ations with integers in base r notation, where r > 1 is an integer. These methods are
examples of algorithms.

Definition. An algorithm is a finite set of precise instructions for performing a com-
putation or for solving a problem.

We will describe algorithms for performing addition, subtraction, and multiplication
of two n-digit integers @ = (a,_1a,_5 . . . 1ap), and b = (b,_ib,_; . . . bibg),, where
initial digits of zero are added if necessary to make both expansions the same length,
The algorithms described are used for both binary arithmetic with integers less than the
word size of a computer, and multiple precision arithmetic with integers larger than the
word size w, using w as the base,

Addition When we add g and &, we obtain the sum

-1 n—1

n—1

To find the base » expansion of @ -+ b, first note that by the division algorithm, there are
integers Cyy and ¢ such that

Ayt by=Cor+sy5, O0=<sy<r.
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Because ag and by are positive integers not exceeding r, we know that 0 <agy -+ by <
2y — 2, so that Cq = Q or 1; here, Cy is the carry to the next place. Next, we find that
there are integers C and 5, such that

a+b+Cy=Cir+s, 0=s<r.
Since 0 < a; + by + Cy < 2r — 1, we know that C = 0 or L. Proceeding inductively, we
find integers C; and s; for 1 <i <n —1by

a4+ b+ Ci_1=Cr+s, 0=5<r,

with C; =0 or 1. Finally, welet s, = C,,_,, since the sum of two integers with n digits has
n + 1digits when there is a carry in the nth place. We conclude that the base » expansion
for the sumisa + & = (5,8,-1. . . 5150),-

When performing base r addition by hand, we can use the same familiar technique
as is used in decimal addition,

Example 2.5. To add (1101), and (1001),, we write

1 I
L1 0t

+ 1001

1011090

where we have indicated carries by 1s in italics written above the appropriate colum.
We found the binary digits of the sum by noting that 1 +1=1-2+0,0+0+1=
0-24+1,1+04+0=0-2+1,and14+1+0=1-240. «

Subtraction Assume that g > b. Consider
n—1i n—1 n—1 )
j=0 j=0 j=0

Note that by the division algorithm, there are integers By and dy such that

ag—'bo———Bgf—f-dg, OSdO*(F,

Where the Word “Algorithm” Comes from .
“Algorithm” is a corruption of the original term “algorism,” which originally comes from
the name of the author of the ninth-century book Kitab al-jabr w'al-muqabala (Rules
of Restoration and Reduction), Abu Ja'far Mohammed ibn Misd al-Khwdrignf (see his
biography included on the next page). The word “algorism” originally referred only to the
rules of performing arithmetic using Hindu-Arabic numerals, but evolved into “algorithm”
by the cighteenth century, With growing interest in computing machines, the concept of an
algorithm became more general, (o include all definite procedures for solving problems, not
just the procedures for performing arithmetic with integers expressed in Arabic notation.
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and because ay and by are positive integers less than 7, we have
~r—=D=<aqy—by=<r-—1.

When ag — by > 0, we have By = 0. Otherwise, when ag — by < 0, we have By = —1;
By is the borrow from the next place of the base r expansion of a. We use the division
algorithm again to find integers By and d; such that

a;—b1+BO=B;r+d1, 05d1<r.

From this equation, we see that the borrow B; = 0 as long as a; — b; + By > 0, and that
By = —1otherwise, because —r < a; — b; + By <r — 1. We proceed inductively to find
integers B; and d;, such that

a;mb,--I-B,-_I:B,-r-]—d,-, OSdi<l’

with B; =0 or —1, for 1 <i <n — 1. We see that B,_; =0, because a > b. We can
conclude that

a—b=(dy_1d, 5...ddy),.

When performing base r subtraction by hand, we use the familiar technique used in
decimal subtraction.

Example 2.6. To subtract (10110), from (11011),, we have

—~1
11011
-10110
1 01

where the 1 in italics above a column indicates a borrow. We found the binary digits
of the difference by noting that 1—0=0-24+1,1—-14+0=0-2+0,0—-1+0=
~1241,1~0-1=0-24+0,and1—14+0=0-2+0. «

ABU JAFAR MOHAMMED IBN MUSA AL-KHWARIZMI (c. 780-
c. 850), an astronomer and mathematician, was a member of the House of
Wisdom, an academy of scientists in Baghdad. ‘The name al-Khwirizmi means
“from the town of Kowarzizm,” now known as Khiva in modern Uzbekistan,
Al-Khwirizmi was the author of books on mathematics, astronomy, and geog-
raphy, People in the West first learned about algebra from his works; the word
“algebra” comes from al-jabr; part of the title of his book Kitab al-jabr w'al
muqabala, which was translated into Latin and widely used as a text. Another
book describes procedures for arithmetic operations using Hindu-Arabic numerals.
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Multiplication Before discussing multiplication, we describe shifting. To multiply
(@ - - - @18g), by r™, we need only shift the expansion left m places, appending the
expansion with m zero digits.

Example 2,7, To multiply (101101), by 27, we shift the digits to the left five places
and append the expansion with five zeros, obtaining (101 10100000}, <

We first discuss the multiplication of an n-place integer by a one-digit integer. To
multiply (a,_; . . . a1ag), by (b),, we first note that

agb=gor +pgp, 9= po<r,

and 0 < gy <7 — 2, because 0 < aqpbh < (r — 1)2. Next, we have

ab+go=gqyr+p, 0=py<r,

and 0 < g < r — 1. In general, we have

ab+ygiy=qr+p, 0=p<r,

and 0 < g; <r — 1. Furthermore, we have p,, = ¢,,_;. This yields (@, . .. aag), (), =
(Pnpn—-l e PLPO)r'

To perform a multiplication of two n-place integers, we write

n—1

n—1
ab=a (Z bjrj) =Y (abprl.
j=0 =0

For each j, we first multiply a by the digit b;, then shift j places to the left, and finally
add all of the » integers we have obtained to find the product.

When multiplying two integers with base r expansions, we use the familiar method
of multiplying decimal integers by hand.

Example 2.8. To‘rnultiply (1101), and (1110),, we write

1101
x1110
0000
1101
101
1101
10110110
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Note that we first multiplied (1101), by each digit of (1110),, shifting each time by the
appropriate number of places, and then we added the appropriate integers to find our
produc. «

Division We wish to find the quotient g in the division algorithm
a=bg+R, O0<R<bh

If the base r expansion of ¢ is ¢ = (g, .1¢,_3 - - - §190),, then we have

n—1
a:b(ijrj)—l-]{, 0<R<b.
f=0

To determine the first digit q,_, of g, notice that
n—2 .
a—bg, "= b(z quf) +R.
j=0

The right-hand side of this equation is not only positive, but also less than br"~!, because

Z;;(z) gl < E’};S(r — Dl = ';;i rf— Z:;;g r/ = r#=1 _ 1. Therefore, we know
that
O<ag-— bqn_lrn—l < bi'"m[.

This tells us that

_ a
In-1= bra—l|"

We can obtain g, _| by successively subtracting br*~! from a until we obtain a negative
result; g,y is then one less than the number of subtractions.

To find the other digits of ¢, we define the sequence of partial remainders R; by

Ry=a
and
Ri=Ri .~ bgy "™
fori =1,2,...,n. By mathematical induction, we show that
nm—i—1
(2.1) R = ( > quf)b +R.

J=0
For i =0, this is clearly correct, because Ry = a = ¢gb + R. Now, assume that

n—k—1 .
Ry = ( Z quf)b-i- R.

J=0
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Then
Rep1 = Ry = bgypyr" ™7
n—k—1 )
= ( Z erj)b +R— bQN—k—lr”“k—l
=0
n—k+1)—1
= ( 2. quj)b+R’
=0
establishing (2.1).
By (2.1) we see that 0 < R; < ip, fori =1,2,...,n, because ']‘.;a—l quj <

r,_; — 1. Consequently, because R; = R; 1 — bg,_;r" Tand0 < R; < r"~1p, we see that
the digit g,,_; is given by [R; _/ (br*—1)]and can be obtained by successively subtracting
br"~i from R;_; until a negative result is obtained, and then g,,_; is one less than the
number of subtractions. This is how we find the digits of g.

Example 2.9. To divide (11101), by (111);, we let g = (g2q190)2- We subtract
22(111), = (11100); once from {11101), to obtain (1),, and once more to obtain a
negative result, so that g, = 1. Now, R| = (11101), — (11100); = (1),. We find that
g, =0, because Ry — 2(111), is less than zero, and likewise g = 0. Hence, the quotient
of the division is (100}, and the remainder is (1), . «

Exercises

. Add (101111011), and (1100111011),.

. Add (10001000111101), and (1111110101111 5.

. Subtract (11010111), from (1111000011),.

. Subtract (101110101), from (1101101100),.

, Multiply (11101); and (110001),.

. Multiply (1110111}, and (10011011),.

. Find the quotient and remainder when (110011111), is divided by (1101)s.

. Find the quotient and remainder when (11010011 1), is divided by (1110D,.
, Add (1234321)5 and (2030104)s.

. Subtract (434421); from (4434201)s.

. Multiply (1234)5 and (3002)s.

12. Find the quotient and remainder when (14321)5 is divided by (334)s.

13. Add (ABAB);g and (BABA) ;.

14. Subtract (CAFE) s from (FEED) .

15, Multiply (FACE),s and (BAD}¢.

16. Find the quotient and remainder when (BEADED) 4 is divided by (ABBA) ;.

- - T I~ 7 B~ T T o
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17.

18.

19,

20.

21,

22,

23.

24,
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Explain how to add, subtract, and multiply the integers 18235187 and 22135674 on a
computer with word size 1000,

Write algorithms for the basic operations with integers in base (—2) notation (sec
Exercise 8 of Section 2.1).

How is the one’s complement representation of the sum of two integers obtained from
the one’s complement representations of those integers?

How is the one’s complement representation of the difference of two integers obtained
from the one’s complement representations of those integers?

Give an algorithm for adding and an algorithm for subtracting Cantor expansions (see
the preamble to Exercise 28 of Section 2.1).

A dozen equals 12, and a gross equals 122, Using base 12, or duodecimal arithmetic,
answer the following questions.

a) If 3 gross, 7 dozen, and 4 eggs are removed from a total of 11 gross and 3 dozen eggs,
how many eggs are left?

b} If 5 truckloads of 2 gross, 3 dozen, and 7 eggs each are delivered to the supermarket,
how many eggs are delivered?

¢) If 11 gross, 10 dozen, and 6 eggs are divided in 3 groups of equal size, how many
eggs are in each group?

A well-known rule used to find the square of an integer with decimal expansion
(@81 - - - @1ag)qo and final digit ay = 5 is to find the decimal expansion of the product
(@y8,_y ... a10l(@a,_1 . .. ap) i + 1), and append this with the digits (25);,. For in-
stance, we see that the decimal expansion of (165)? begins with 16+ 17 = 272, so that
(165)2 = 27225. Show that this rule is valid.

In this exercise, we generalize the rule given in Exercise 23 to find the squares of integers
with final base 2B digit B, where B is a positive integer. Show that the base 2B expansion
of the integer (a,a,_; .. . ajap),p starts with the digits of the base 2B expansion of the
integer (a,a,_y . .. ap)yp [(@ya,_; . . .a)yz + 1and ends with the digits B/2 and 0 when
B is even, and the digits (B — 1)/2 and B when B is odd,

Computational and Programming Exercises

Computations and Exploerations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations,

1.

Verify the rules given in Exercises 23 and 24 for examples of your choice.

Programming Projects

Write programs using Maple, Mathematica, or a language of your choice to do the following.

1.
2.
3.
4,

Perform addition with arbitrarily large integers.
Perform subtraction with arbitrarily large integers.
Multiply two arbitrarily large integers using the conventional algorithm.

Divide arbitrarily large integers, finding the quotient and remainder.
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Complexity of Integer Operations

Once an algorithm has been specified for an operation, we can consider the amount of
time required to perform this algorithm on a computer. We will measure the amount of
time in terms of bit operations. By a bit operation we mean the addition, subtraction, or
multiplication of two binary digits, the division of a two-bit by a one-bit integer (obtain-
ing a quotient and a remainder), or the shifting of a binary integer one place. {The actual
amount of time required to carry out a bit operation on a computer varies depending on
the computer architecture and capacity.) When we describe the number of bit operations
needed to perform an algorithm, we are describing the computational complexity of this
algorithm.

In describing the number of bit operations needed to perform calculations, we will
use big-O notation. Big-O notation provides an upper bound on the size of a function in
terms of a particular well-known reference function whose size at large values is easily
understood.

To motivate the definition of this notation, consider the following situation. Suppose
that to perform a specified operation on an integer n requires at most 13 + 8n% log n bit
operations. Since 812 log n < 8n> for every positive integer, less than 913 bit operations
are required for this operation for every integer n. Since the number of bit operations
required is always less than a constant times 3, namely 93, we say that O(n?) bit
operations are needed. In general, we have the following definition.

Definition. If f and g are functions taking positive values, defined for all x € S, where
§ is a specified set of real numbers, then f is O(g) on Sif thereisa positive constant K
such that f(x) < Kg(x) for all sufficiently large x € S. (Normally, we take S to be the
set of positive integers, and we drop all reference to §.)

Big-0O notation is used extensively throughout number theory and in the analy-
sis of algorithms. Paul Bachmann introduced big-O notation in 1892 {{Ba%41]}. The
big-O notation is sometimes called a Landau symbol, after Edmund Landan, who used
this notation thronghout his work in the estimation of various functions in number theory.
The use of big-O notation in the analysis of algorithms was popularized by renowned
computer scientist Donald Knuth.

We illustrate this concept of big-O notation with several examples.

Example 2.10. We can show on the set of positive integers that nt+ 203 + 5is O (nh).
To do this, note that n* + 203 + 5 < n* + 20 + 50t = 8n* for all posilive integers. (We
take K = 8 in the definition.) The reader should also note that ntis Ot + 2 + 5).

-«

Example 2,.11. We can easily give a big-O estimate for Z'J;l j. Noting that each
summand is less than z tellsus that -7, j <3} _n=n-n= n?. Note that we could
also derive this estimate easily from the formula ’;':1 J=n{n+1/2, <
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We now will give some useful results for working with big-O estimates for combi-
nations of functions. _

Theorem 2.2, If f is O{g) and ¢ is a positive constant, then cf is O(g).

Proof. If f is O(g), then there is a constant K with f(x) < Kg(x) for all x under
consideration. Hence cf (x) < (cK)g(x), so ¢f is O(g). |

Theorem 2.3. If fis O(gy) and f; is O(gy), then f; + f5is O(g; + &), and fifais
0(8182)- :

Proof. If f is O(gy) and f, is O(gy), then there are constants K and K, such that
filx) < Kygy(x) and f,(x) < K,g,(x) for all x under consideration. Hence,

Filx) + fo(x) < K1g1(x) + Kog,(x)
< K(gi1(x) + g,(x)),
where K is the maximum of K; and K. Hence, f; + f, is O(g, + g2).
Also,
filx) f2(x) < Kig1() Ky g5(x)
= (K1K3)(g1(x)g2(x)),
s0 fif2is O(g1£2)- =

PAUL GUSTAV HEENRICH BACHMANN (1837-1920), the son of a pas-
tor, shared his father’s pious lfestyle, as well as his love of music. His talent for
mathematics was discovered by one of his early teachers. After recovering from
tuberculosis, he studied at the University of Berlin and later in Géttingen, where
he attended lectures presented by Dirichlet. In 1862, he received his doctorate
under the supervision of the number theorist Kummer, Bachmann became a pro-
fessor at Breslau and later at Miinster. After retiring, he continued mathematical
research, played the piano, and served as a music critic for newspapers. His
writings include a five-volume survey of number theory, a two-volume work on elementary number
theory, a book on irrational numbers, and a book on Fermat’s last theorem (this theorem is discussed
in Chapter 13}. Bachmann introduced big-O notation in 1892,

EDMUND LANDAU (1877~1938) was the son of a Berlin gynecologist, and
attended high school in Berlin. He received his doctorate in 1899 under the

- direction of Frobenius, Landau first taught at the University of Berlin and then
moved to Gttingen, where he was full professor until the Nazis forced him
to stop teaching. His main contributions to mathematics were in the field of
analytic number theory; he established several important results concerning the
distribution of primes, He authored a three-volurne work on number theory and
many other books on mathematical analysis and analytic number theory.
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Corollary 2.3.1. If fj and £, are O(g), then fi + fois O(g).

Proof Theorem 2.3 tells us that f; + f, is O(2g). But if fi + f, < K(2¢g), then
fi+ f<@2K)g,s0 fi+ fois O(g). n

The goal in using big-O estimates is to give the best big-O estimate possible while
f using the simplest reference function possible. Well-known reference functions used in
g big-O estimates include 1, log n, n, n logn, nlog nloglogn, n2, and 2", as well as some
i other important functions. Calculus can be used to show that each function in this list is
smaller than the next function in the list, in the sense that the ratio of the function and the
next function tends to 0 as n grows without bound. Note that more complicated functions
than these occur in big-O estimates, as you will see in later chapters.

We illustrate how to use theorems for working with big-O estimates with the fol-
lowing example.

Example 2.12. To give a big-O estimate for (n + 8logn) (10n logn + 17n?), first
_ note that n + 8log n is O(n) and 10n logn + 1712 is O(n?) (because log » is O(n) and
iy nlog n is O (%)) by Theorems 2.2 and 2.3 and Corollary 2.3.1. By Theorem 2.3, we see
that (n 4+ 8 log n)(10n logn + 7% is O(n). -«

Using big-O notation, we can see that to add or subtract two n-bit integers takes
O (n) bit operations, whereas to multiply two #-bit integers in the conventional way takes
O (n?) bit operations (see Exercises 12 and 13 at the end of this section). Surprisingly,

DONALD KNUTH (b, 1938) prew up in Milwaukee where his father owned
a small printing business and taught bookkeeping. He was an excellent student
who also applied his intelligence in unconventional ways, such as finding more
than 4500 words that could be spelled from the letters in “Ziegler’s Giant Bar,”
winning a television set for his school and candy bars for everyone in his class.

Knuth graduated from Case Institute of Technology in 1960 with B.S. and
M.S. degrees in mathematics, by special award of the faculty who considered
his work outstanding. At Case he managed the basketball team and applied his
mathematical talents by evaluating ach player using a formula he developed {receiving coverage on
CBS television and in Newsweek). Knuth received his doctorate in 1963 from the California Institute
of Technology.

Knuth taught at the California Institute of Technology and Stanford University, retiring in 1992
to concentrate on writing. He is especially interested in updating and adding to his famous series,
The Art of Computer Programming. This series has had a profound influence on the development of
computer science. Knuth is the founder of the madern study of computational complexity and has
made fundamental contributions to the theory of compilers. Knuth has also invented the widely used
TeX and Metafont systems used for mathematical (and general) typography. TeX played an important
role in the development of HTML and the Internet, He popularized the big-O notation in his work on
the analysis of algorithms.

Knuth has written for a wide range of professional journals in computer science and mathematics.
However, his first publication, in 1957, when he was a college freshman, was the “The Potrzebie
System of Weights and Measures,” a parody of the metric system, which appeared in MAD Magazine.
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there are faster algorithms for multiplying large integers. To develop one such algorithm,
we first consider the muitiplication of two 2n-bit integers, say a = (ay, _1@,_5 . . . ayag),
and b = (b2f1715211—2 - blbD}Z' We write

a= 2"A1 -[— AO b :2HB1 + Bo,
where

Al = (a21t—-1a2?!—2 cee anJrlan)Z AO = (an—lan-Z L aIGD)Z
Bi= by abam—z .. bypibn)y By= (bp_iby_3 ... biby),.

We will use the identity 7
2.2) ab= (2% 4 2"YA B+ 2M(A| — Ag)(Bg — By + (2" + DAy By.

To find the product of a and b using (2.2) requires that we perform three multiplications
of n-bit integers (namely, 4By, (A 1 — Ag)(By — By), and AgBy), as well as a number
of additions and shifts. This is illustrated by the following example.

Example 2.13. We can use (2.2) to multiply (1101); and (1011),. We have (1 101), =
22(11); + (1), and (1011), = 22(10), + (11),. Using (2.2), we find that
(1101),(1011)3 = (2* + 25(1D,(10), + 22((11)5 — (1)) - ((11), — (10))+
(2% + 10D, (11),
= (2* 4+ 29(110); +22(10),01), + (22 + D(11),
= (1100000); + (11000); + (1000), -+ (1100), + (11),
= (10001 111),. <

We will now estimate the number of bit operations required to multiply two n-bit integers
by using (2.2) repeatedly. If we let M (n) denote the number of bit operations needed to
multiply two n-bit integers, we find from (2.2) that

(2.3) M@2n) <3M(n) + Cn,

where C is a constant, because each of the three multiplications of n-bit integers takes
M (n) bit operations, whereas the number of additions and shifts needed to compute ab
via (2.2) does not depend on #, and each of these operafions takes ((n) bil operations.

From (2.3), using mathematical induction, we can show that
2.4 M@2h <3 — 2%,

where ¢ is the maximum of the quantities M (2) and C (the constant in (2.3)). To carry out
the induction argument, we first note that with k = 1, we have M @) <eBl=2h =g,
because ¢ is the maximum of M (2) and C.

As the induction hypothesis, we assume that

M2y < (3% 2%,
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Then, using {2.3), we have

MYy < 3p02%) + c2F
<3c(3F — 25 4 2
<3328 4 2k
< C(3k+1 _ 2k+1).
This establishes that (2.4} is valid for all positive integers k.

Using inequality (2.4), we can prove the following theorem.

Theorem 2.4, Multiplication of two n-bit integers can be performed using O (nloE23)
bit operations. (Note: log, 3 is approximately 1.585, which is considerably less than the
exponent 2 that occurs in the estimate of the number of bit operations needed for the
conventional multiplication algorithm.)

Proof. From (2.4), we have

Mn) = M(z]ﬂgz ") < M(z[lOgZIJHI)
< ¢(3llogrHHt _ gliog nltly

< 3¢ . qlem ] < 3. . glosan — 3en’823  (because 308" = n'og2 3y,
Hence, M(n) is O (n1o823), n

We now state, without proof, two pertinent theorems. Proofs may be found in [Kn97}
or [Kr79]. i

Theorem 2.5. Given a positive number € > 0, there is an algorithm for multiplication
of two n-bit integers using O (') bit operations.

Note that Theorem 2.4 is a special case of Theorem 2.5 with € =log, 3 - 1, which
is approximately 0.533.

Theorem 2.6. There is an algorithm to multiply two n-bit integers using
O(n log, n log, log, n) bit operations.

Since logy n and log, logy n are much smaller than n¢ for large numbers n,
Theorem 2.6 is an improvement over Theorem 2.5. Although we know that M (n) is
O(n log, n log, log, n), for simplicity we will use the obvious fact that M(n) is O (n?)
in our subsequent discussions.

The conventional algorithm described in Section 2.2 performs a division of a
2n-bit integer by an n-bit integer with O (n?) bit operations. However, the number of
bit operations needed for integer division can be related to the number of bit operations
needed for integer multiplication. We state the following theorem, which is based on an
algorithm discussed in [Kn97).
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Theorem 2.7. There is an algorithm to find the quotient g = [a/b], when the
2n-bit integer 4 is divided by the integer b (having no more than bits), using O (M (n))
bit operations, where M(n) is the number of bit operations needed to muitiply two
n-bit integers.

2.3 Exercises

1.

S 1 & ! R W o

11.

12,

13

14.

15.

i6.

17.
13.

Determine whether each of the following functions is O (1) on the set of positive integers.

a)y2n+7 dylog(n®+ 1)
b) n2/3 e) vVn? 1
c) 10 DE2+D/n+ D

. Show that 22* 4 3n% + 17 is O (") on the set of positive integers.

. Show that (n? - 412 logn + 101 (14n log n + 8n) is O(n? log n).

- Show that n!is O (n") on the set of positive integers.

» Show that (n!+ 1)(n + log n) + (> + n™)({og n)* + n +7) is O+,
. Suppose that m is a positive real number. Show that E;f:] Fis O(nmth.
. Show that i log # is & (log n]) on the set of positive integers,

. Show that if f] and f; are O(g)) and O{gy), fespective]y, and ¢; and ¢, are constants,

then ¢y fi + ¢ f is O(g; + g,).

- Show thatif f is O(g), then f* is O(g*) for all positive integers k.
10,

Let r be a positive real number greater than 1. Show that a function f is O(log, n) if
and only if f is O(log, n). (Hint: Recall that log, n/log, n=log, b.)
Show that the base b expansion of a positive integer # has Hog n]+ 1 digits.

Analyzing the conventional algorithms for subtraction and addition, show that these
operations require ((n) bit operations with n-bit integers.

Show that to multiply an n-bit and an m-bit integer in the conventional manner requires
O(nm}) bit operations.

Estimate the number of bit operations needed to find 1+ 2 +-+4n,

a) by performing all the additions;

b} by using the identity 1 £ 2+4-+-- 4 n=n {n + 1)/2, and muitiplying and shifting.

Give an estimate for the number of bit operations needed to find each of the following
quantities.

a) n! b) (:)

Give an estimate of the number of bit operations needed to find the binary expansion of
an integer from its decimal expansion.

Use identity (2.2) with # =2 to multiply (1001), and (1011),.

Use identity (2.2) with # =4, and then with » = 2, to multiply (10010011), and
(1100100D),. -
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19.

20.

21.

* 22,

23.

a) Show there is an identity analogous to (2.2) for decimal expansions.

b) Using part (a), multiply 73 and 87 performing only three multiplications of one-digit
integers, plus shifts and additions.

¢) Using part (a}, reduce the multiplication of 4216 and 2733 to three multiplications
of two-digit integers, plus shifts and additions; then, using part (a) again, reduce
each of the muitiplications of two-digit integers into three multiplications of one-
digit integers, plus shifts and additions. Complete the multiplication using only nine
multiplications of one-digit integers, and shifts and additions,

If A and B are n x n matrices, with entries a;; and b,-j forl<i<n,1<j<n,then

AB is the n x # matrix with entries ¢;; = 3 ;| ajby;. Show that n® multiplications of
integers are used to find AB directly from its definition.

Show that it is possible to multiply two 2 x 2 matrices using only seven multiplications
of integers, by using the identity

(fln 012) (bn 512)
ay anp ) \by by

agsbyy + arabyy x + {agy + ay)(bya — byy)
_ + (ayy + a1z - ax — aadby
x + (ayy — az){byg — b12) x + (ay — )by — b1a) ,

—agn(by —by —bip+by)  + ey t+an)b — by
where x = aybyy ~ (@1 — @y — ap) (b1 — b1a + bp2).

Using an inductive argument, and splitting (27) x (2n) matrices into fourn X matrices,
use Exercise 21 to show that it is possible to multiply two 2% x 2% matrices using only
7* multiplications, and less than 7%+! additions.

Conclude from Exercise 22 that two » X n matrices can be multiplied using O (n'°%27)
bit operations when all entries of the matrices have less than ¢ bits, where c is a constant.

2.3 Computational and Programming Exercises

Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have wrilten,
carry out the following computations and explorations.

1.

2.

Maultiply 81,873,569 and 41,458,892 by using identity (2.2) with these eight-digit inte-
gers, with the resulting four-digit integers, and with the fesulting two-digit integers.

Multiply two § x 8 matrices of your choice, by using the identity in Exercise 21 with
these matrices and then again for the multiplication of the resulting 4 x 4 matrices,

Programming Projects

Write programs using Maple, Mathematica, or 2 langnage of your choice to do the following.

* 1.

% 2, Multiply two n X # matrices using the algorithm discussed in Exercises 21-23.

Multiply two arbitrarily large integers using identity (2.2).



Primes and Greatest
Common Divisors

Introduction

This chapter introduces a central concept of number theory, namely that of a prime
number. A prime is an integer with precisely two positive integer divisors. Prime numbers
were studied extensively by the ancient Greeks, who discovered many of their basic
properties. In the past three centuries, mathematicians have devoted countless hours
to exploring the world of primes. They have discovered many fascinating properties,
formulated diverse conjectures, and proved interesting and surprising results. Research
into questions involving primes continues today, partly driven by the importance of
primes in modern cryptography. Open guestions about primes stimulate new research.
There are also hordes of people trying to enter the record books by finding the largest
prime yet known,

In this chapter, we will show that there are infinitely many primes. The proof we
will give dates back to ancient times. We will also show how to find all the primes not
exceeding a given integer, using the sieve of Eratosthenes, also dating back to antiquity,
We will discuss the distribution of primes, and state the famous prime number theorem
that was proved at the end of the nineteenth century. This theorem provides an accurate
estimate for the number of primes not exceeding a given integer. Many questions about
primes remain open despite attention from mathematicians over hundreds of years; we
will discuss two of the best known, the twin prime conjecture and Goldbach’s conjecture.

This chapter also shows that every positive integer can be written uniquely as the
product of primes (when the primes are written in increasing order of size). This result is
known as the fundamental theorem of arithmetic. To prove this theorem, we will use the
concept of the greatest common divisor of two integers. We will establish many important
properties of the greatest common divisor in this chapter, such as the fact that it is the
smallest linear combination of these integers. We will describe the Euclidean algorithm
that can be used for finding the greatest common divisor of two integers, and analyze
its computational complexity. We will discuss methods used to find the factorization of

67
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integers into products of primes, and discuss the complexity of these methods. Numbers
of special form are often studied in number theory; in this chapter, we will introduce the
Fermat numbers, which are integers of the form 22" 4 1. (Fermat conjectured that they
are all prime but this turns ouf not to be true.)

Finally, we will introduce the concept of a diophantine equation, which is an equa-
tion where only solutions in integers are sought. We will show how greatest common
divisors can be used to help solve linear diophantine equations. Unlike many other dio-
phantine equations, linear diophantine equations can be solved easily and systematically.

Prime Numbers

The positive integer 1 has just one positive divisor. Every other positive integer has at
least two positive divisors, because it is divisible by 1and by itself. Integers with exactly
two positive divisors are of great importance in number theory; they are called primes.

Definition. A prime is a positive integer greater than 1 that is divisible by no positive
integers other than 1 and itself.

Example 3.1, The integers 2, 3, 5, 13, 101, and 163 are primes. -«
Definition. A positive integer greater than 1 that is not prime is called composite.

Example 3.2. Theintegers 4=2-2,8=4-2,33=3-11,111=3. 37, and 1001 =
7 - 11.13 are composite. <

The primes are the multiplicative building blocks of the integers. Later, we will show
that every positive integer can be written uniquely as the product of primes.

In this section, we wilt discuss the distribution of prime numbers among the set of
positive integers, and prove some elementary properties about this distribution, We will
also discuss more powerful results about the distribution of primes. The theorems we
will introduce include some of the most famous results in number theory.

You can find all primes less than 10,000 in Table E.1 at the end of the book.

The Infinitude of Primes We start by showing that there are infinitely many primes,
for which the following lemma is needed.

Lemma 3.1, Every positive integer greater than 1 has a prime divisor.

Proof. We prove the lemma by contradiction; we assume that there is a positive integer
greater than 1 having no prime divisors. Then, since the set of positive integers greater
than 1 with no prime divisors is nonempty, the well-ordering property tells us that there
is a least positive integer n greater than 1 with no prime divisors. Since » has no prime
divisors and » divides n, we see that » is not prime, Hence, we can write n = ab with
l<a <nand 1 <b < n Because a < #, @ must have a prime divisor. By Theorem 1.8,
any divisor of a is also a divisor of n, so n must have a prime divisor, contradicting the
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fact that n has no prime divisors. We can conclude that every positive integer greater
than | has at least one prime divisor. =

We now show that there are infinitely many primes, a wondrous result known by
the ancient Greeks. This is one of the key theorems in number theory that can be proved
in a variety of ways. The proof we will provide was presented by Euclid in his book
the Elements (Book IX, 20). This simple, yet elegant proof is considered by many to be
particularly beautiful. It is not surprising that the very first proof found in the book Proofs
from THE BOOK [AiZi03], a collection of particularly insightful and clever proofs,
begins with this proof found in Euclid. Moreover, this book presents six quite different
proofs of the infinitude of primes, (Here, THE BOOK refers to the imagined collection
of perfect proofs that Paul ErdSs claimed is maintained by God.) We will introduce
a variety of different proofs that there are infinitely many primes later in this chapter.
(See Exercise 8 at the end of this section, the exercise sets in Sections 3.3 and 3.5, and
Section 3.6.)

Theorem 3.1. There are infinitely many primes.

Proof.  Suppose that there are only finitely many primes, py, ps, . . . Py, Where nis a
positive integer. Consider the integer Q,,, obtained by multiplying these primes together
and adding one, that is,

Qr:=p1P2" 'pn+1'

By Lemma 3.1, @ has at least one prime divisor, say g. We obtain a contradiction by
showing that g is not one of the primes listed. (These supposedly formed a complete list of
all primes.) If ¢ = p; for some integer j with 1 < j < n, thensince Q,, — PPz Pa=1,
because g divides both terms on the left-hand side of this equation, by Theorem 1.9 it
follows that ¢[1. This is impossible because no prime divides 1. Consequently, g must be
a prime we have.not listed. This contradiction shows that there are infinity many primes.

n

‘The proof of Theorem 3.1 is nonconstructive because the integer we have con-

structed in the proof, Q,, which is one more than the product of the first # primes, may

. or may not be prime (see Exercise 11). Consequently, in the proof we have not found a
new prime, but we know that one exists,

Finding Primes  In later chapters, we will be interested in finding and using extremely
Targe primes. Tests distinguishing between primes and composite integers will be crucial;
such tests are called primality tests. The most basic primality test is trial division, which
tells us that the integer » is prime if and only if it is not divisible by any prime not
exceeding +/n. We now prove that this test can be used to determine whether # is prime,

Theorem 3.2. If n is a composite integer, then » has a prime factor not exceeding /1.

Proof. Since n is composite, we can write # = ab, where a and b are integers with I <
a < b < n. We must have a < ./n, since otherwise b > a > /nand ab > /n - /n =n.
Now, by Lemma 3.1, a must have a prime divisor, which by Theorem 1.8 is also a
divisor of r and which is clearly less than or equal to /1. n
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1 2 3 4+ 5 6 1 % 5 16

‘ _ 11 42 13 0w 15 16 17 19 26
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Figure 3.1 Using the sieve of Eratosthenes to find the primes less than 100.

We can use Theorem 3.2 to find all the primes less than or equal to a given positive

integer n. This procedure is called the sieve of Eratosthenes, since it was invented by

@ the ancient CGreek mathematician Eratosthenes. We illustrate its use in Figure 3.1 by

_ finding all primes less than 100. We first note that every composite integer less than

| 100 must have a prime factor less than /100 = 10. Since the only primes less than

10 are 2,3, 5, and 7, we only need to check each integer less than 100 for divisibility

by these primes. We first cross out, with a horizontal slash {(—), all multiples of 2

greater than 2. Next, we cross out with a slash (/) those integers remaining that are

multiples of 3, other than 3 itself. Then all muitiples of 5, other than 5, that remain

\ are crossed out with a backslash (V). Finally, all multiples of 7, other than 7, that are left

! are crossed out with a vertical slash (|). All remaining integers (other than 1) must be
prime.

i Although the sieve of Eratosthenes produces all primes less than or equal to a fixed
integer, to determine in this manner whether a particular integer n is prime it is necessary
to check n for divisibility by all primes not exceeding /. This is quite inefficient; later,
we will give better methods for deciding whether or not an integer is prime.

ERATOSTHENES (c. 276-194 5.c.5.} was born in Cyrene, which was a Greek
colony west of Egypt. It is known that he spent some time studying at Plato’s
school in Athens. King Ptolemy II invited Eratosthenes to Alexandria to tutor
his son. Later, Eratosthenes became the chief librarian of the famous library
at Alexandria, which was a central repository of ancient works of literature,
art, and science. He was an extremely versatile scholar, having written on
mathematics, geogeaphy, astronomy, history, philosophy, and literature. Besides
his work in mathematics, Eratosthenes was most noted for his chronology of
ancient history and for his geographical measurerents, including his famous measurement of the
size of the earth. )
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We now introduce a function that counts the primes not exceeding a specified
number.

Definition. The function 7 (x), where x is a positive real number, denotes the number
of primes not exceeding x.

Example3.3. From our illustration of the sieve of Eratosthenes, we see that 7(10) = 4
and 7 (100) = 25, “

Primes in Arithmetic Progressions Every odd integer is either of the form 4n +1
or the form: 4n 4 3. Are there infinitely many primes in both these forms? The primes
5,13,17,29,37,41,. . . are of the form 4n + 1 and the primes 3,7, 11, 19,23,31, 43, . ..
are of the form 4n + 3. Looking at this evidence hints that there are infinitely many
primes in both these progressions. What about other arithmetic progressions such as
3n+1,7n +4, 81 47, and so on? Does each of these contain infinitely many primes?
German mathematician G. Lejeune Dirichlet settled this question in 1837, when he used
methods from complex analysis to prove the following theorem.

Theorem 3.3. Dirichlet’s Theorem on Primes in Arithmetic Progressions. Suppose
that 2 and b are positive integers not divisible by the same prime. Then the arithmetic
progressionan +b,n=1,2,3, ..., contains infinitely many primes.

No simple proof of Dirichlet’s theorem on primes in arithmetic progressions is
known. (Dirichlet’s original proof used complex variables. In the 1950s an elementary but
complicated proof was found by Selberg.) However, special cases of Dirichlet’s theorem
can be proved quite easily. We will illustrate this in Section 3.5, by showing that there
are infinitely many primes of the form 4n + 3.

The Largest Known Primes For hundreds if not thousands of years, professional and
amateur mathematicians have been motivated to find a prime larger than any currently
known. The person who discovers such a prime becomes famous, at least for a time,

helped make Gauss's discoveries accessible to other mathematicians. Besides his fundamental work
in mumber theory, Dirichlet made many important contributions to analysis. His famous “drawer
principle,” also called the pigeonhole principle, is used extensively in combinatorics and in number
theory. '

G. LEJEUNE DIRICHLET (1805-1859) was born into a French family living
in the vicinity of Cologne, Germany. He studied at the University of Paris when
this was an important world center of mathematics. He held positions at the
University of Breslau and the University of Berlin, and in 1855 was chosen
to succeed Gauss at the University of Gottingen, Dirichlet is said to be the
first person to master Gauss’s Disquisitiones Arithmeticae, which had appeared
20 years earlier. He is said to have kept a copy of this book at his side even
when he traveled. His book on number theory, Vorlesungen tiber Zahlentheorie,
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and has his or her name entered into the record books. Because there are infinitely many
prime numbers, there is always a prime larger than the current record. Looking for new
primes is done somewhat systematically; rather than checking randomly, people examine
numbers that have a special form. For example, in Chapter 7 we will discuss primes of
the form 27 — 1, where p is prime; such numbers are called Mersenne primes. We will
see that there is a special test that makes it possible to determine whether 2P —1is
prime, without performing trial divisions. The largest known prime number has been a
Mersenne prime for most of the past hundred years. Currently, the world record for the
largest prime known is 224036583 _ 1,

Formulas for Primes 1s there a formula that generates only primes? This is an-
other question that has interested mathematicians for many years. No polynomial in
one variable has this property, as Exercise 23 demonstrates. It is also the case that
no polynomial in »n variables, where » is a positive integer, generates only primes
(a result that is beyond the scope of this book). There are several impractical for-
mulas that generate only primes. For example, Mills has shown that there is a con-
stant © such that the function f{n) = [©¥"] generates only primes. Here the value
of © is known only approximately, with ® = 1.3064. This formula is impractical for
generating primes not only because the exact value of ® is not known, but also be-
cause to compute ® you must know the primes that f(n) gengrates (see [Mi47] for
details).

1f no useful formula can be used to generate large primes, how can they be generated?
In Chapter 6, we will learn how to generate large primes using what are known as
probabilistic primality tests.

Primality Proofs

If someone presents you with a positive integer n and claims that » is prime, how can you
be sure that » really is prime? We already know that we can determine whether » is prime
by performing trial divistons of n by the primes not exceeding A/, I n is not divisible
by any of these primes, it itself is prime. Consequently, once we have determined that
n is not divisible by any prime not exceeding its square root, we have produced a proof
that n is prime. Such a proof is also known as a certificate of primality.

Unfortunately, using trial division to produce a certificate of primality is extremely
inefficient. To see this, we estimate the number of bit operations used by this test. Using
the prime number theorem, we can estimate the number of bit operations needed to show
that an integer n is prime by trial divisions of n by all primes not exceeding /1. The prime
number theorem tells us that there are approximately v/#1/log /it = 2/n/log n primes
not exceeding /7. To divide n by an integer m takes O(log, n - log, m) bit operations.
Therefore, the number of bit operations needed to show that » is prime by this method is
at feast (24/71/log n) (¢ log, n) = c./n (where we have ignored the log, m term because it
is at least 1, even though it sometimes is as large as (log, 7)/2). This method of showing
that an integer n is prime is very inefficient, for it is necessary not only to know all the
primes not Jarger than /7, but to do at least a constant multiple of ./ bit operations.
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To input an integer into a computer program, we input the binary digits of the integer.
Consequently, the computational complexity of algorithms for determining whether an
integer is prime is measured in terms of the number of binary digits in the integer. By
Exercise 11 in Section 2.3 we know that a positive integer » has [log, n]+ 1 binary digits.
Consequently, a big-O estimate for the computational complexity of an algorithm in
terms of number of binary digits of # translates to the same big-O estimate in terms of
log, n, and vice versa. Note that the algorithm using trial divisions to determine whether
an integer » is prime is exponential in terms of the number of binary digits of », or
in terms of log, n, because /i = 2182 4/2 That is, this algorithm has exponential time
complexity, measured in terms of the number of binary digits in n, As » gets large,
an aigorithm with exponential complexity quickly becomes impractical. Determining
whether a number with 200 digits is prime using trial division still takes billions of years
on the fastest computers.

Mathematicians have looked for efficient primality tests for many years. In par-
ticular, they have searched for an algorithm that produces a certificate of primality in
polynomial time, measured in terms of the number of binary digits of the integer input.
In 1975, G. L. Miller developed an algorithm that can prove that an integer is prime
using O((log n)°) bit operations, assuming the validity of & hypothesis called the gener-
alized Riemann hypothesis. Unfortunately, the generatized Riemann hypothesis remains
an open conjecture. In 1983, Leonard Adleman, Carl Pomerance, and Robert Rumely
developed an algorithm that can prove an integer is prime using (log n)¢logloglogn pyy
operations, where ¢ is a constant. Although their algorithm does not run in polynomial
time, it runs in close to polynomial time because the function log log log n grows so
slowly. To use their algorithm with an up-to-date PC to determine whether a 100-digit
integer is prime requires just a few milliseconds, determining whether a 400-digit inte-
gex is prime requires less than a second, and determining whether a 1000-digit integer is
prime takes less than an hour, {For more information about their test, see [AdPoRu83]
and [Ru83].)

Until 2002, no one was able to find a polynomial time algorithm for proving that a
positive integer is prime. In 2002, M. Agrawal, N. Kayal, and N. Saxena, an Indian
computer science professor and two of his undergraduate students, announced that
they had found an algorithm that can produce a certificate of primality for an integer
n using O((log m)'?) bit operations. Their discovery of a polynomial time algorithm
for proving that a positive integer is prime surprised the mathematical community.
Their announcement stated that “PRIMES is in P” Here, computer scientists denote
by PRIMES the problem of determining whether a given integer n is prime, and P
denotes the class of problems that can be solved in polynomial time. Consequently,
PRIMES is in P means that one can determine whether 7 is prime using an algorithm
that has computational complexity bounded by a polynomial in the number of binary
digits in #, or equivalently, in log n. Their proof can be found in [AgKaS8a02] and can
be understood by undergraduate students who have studied number theory and abstract
algebra. In this paper, they also show that under the assumption of a widely believed
conjecture about the density of Sophie Germain primes (primes p for which 2p + 1 is
also prime), their algorithm uses only O ( (log 7)®) bit operations. Other mathematicians
have also improved on Agrawal, Kayal, and Saxena’s result. In particular, H. Lenstra
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and C. Pomerance have reduced the exponent 12 in the original estimate to 6 + €, where
€ is any positive real number.

It is important to note that in our discussion of primality tests, we have only addressed

deterministic algorithms, that is, algorithms that decide with certainty whether an integer
is prime. In Chapter 6, we will introduce the notion of probabilistic primality tests, that
is, tests that tell us that there is a high probability, but not a certainty, that an integer is
prime.

3.1 Exercises
1.

~1 fhootn b W

10

Determine which of the following integers are primes,

a) 101 c) 107 e} 113
b) 103 dy 111 fyi2l

. Determine which of the following integers are primes,

a) 201 ¢) 207 €) 213
b) 203 d211 £y221

. Use the sieve of Eratosthenes to find all primes less than 150.

Use the sicve of Eratosthenes to find all primes less than 200,

. Find all primes that are the difference of the fourth powers of two integers.

. Show that no integer of the form 13 + 1is a prime, other than 2 = B+1

. Show that if @ and n are positive integers with n > 1 and @" — 1is prime, thena = 2 and

n is prime. (Hint: Use the identity al — 1= (a* — D@00 +a*2 ... 4 at+ 1))

. (This exercise constructs another proof of the infinitude of primes.) Show that the integer

0, =n!+ 1, where n is a positive integer, has a prime divisor greater than r. Conclude
that there are infinitely many primes.

. Can you show that there are infinitely many primes by looking at the integers S,=nl—-1

1L

12.

13.

where # is a positive integer?

Using Euclid’s proof that there are infinitely many primes, show that the nth prime p,

does not exceed 22 whenever » is a positive integer. Conclude that when n is a positive
integer, there are at least # + 1 primes less than 27,

Let @, = pips ... Py + 1, where py, pa, . . ., P, are the n smallest primes. Determine
the smallest prime factor of Q,, for n = 1,2, 3,4, 5, and 6. Do you think that O, is prime
infinitely often? (Note: This is an unresolved guestion.)

Show thatif py is the kth prime, where k is a positive integer, then p, < p1P2. - Pu—i+ 1
for all integers # withn = 3.

Show that if the smallest prime factor p of the positive integer » exceeds n, thenn/p
must be prime or 1.



14,

15.

16.

17.

* 18

19.
20,

21.

22,

% 23.
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Show that if p is a prime in the arithmetic progression 3n - 1,n = 1,2,3,... thenitis
also in the arithmetic progression 6n -+ 1,n =1,2,3,. ...

Find the smallest prime in the arithmetic progression an + b, where
aa=3,b=1 bya=355b=4. ¢ya=11,5b=16
Find the smallest prime in the arithmetic progression an + b, where
wa=35b=1 ba=7b=2 ¢)a=23b=13,

Use the second principle of mathematical induction to prove that every integer greater
than 1 is either prime or the product of two or more primes.

Use the principle of inclusion-exclusion (Exercise 16 of Appendix B) to show that

7 () = (/B — 1)+ — ([i’_] + [-"—} - [_’1])
P4 i 2] P
(G55
+ + ) —F+- 4
P1pa Pips Pr_iPr
_([ S ]+...+[ n D+
P1Papy PP2py Pr—2Pr—10r

where py, py, . - -, p, are the primes less than or equal to /z (with r = 1 (/n)). (Hint:
Let property F; be the property that an integer is divisible by Pi)

Use Exercise 18 to find 7 (250).

Show that x2 — x .- 41 s prime for all integers x with 0 < x < 40. Show, however, that
it is composite for x = 41.

Show that 212 + 11 is prime for all integers n with 0 < n < 10, but is composite for
n=11

Show that 2n% 4 29 is prime for all integers n with 0 <» <28, but is composite for
n=729,

Show that if f(x) = a,x" +a,_x" 1+ .. + ayx + ay, where the coefficients are
integers, then there is an integer y such that f(y) is composite. (Hint: Assume that
J(x) = pisprime, and show that p divides f(x + kp) for all integers k. Conclude that
there is aninteger y such that £ (y) is composite from the fact thata polynomial of degree
n, 1 > 1, takes on each value at most r times,)

The fucky numbers are generated by the following sieving process: Start with the positive
integers. Begin the process by crossing out every second integer in the list, starting your count
with the integer 1. Other than 1, the smallest integer not crossed out is 3, so we continue by
crossing out every third integer left, starting the count with the integer 1. The next integer left
is 7, so we cross out every seventh integer left. Continue this process, where at each stage we
cross out every kth integer left, where & is the smallest integer not crossed out, other than 1,
not yet used in the sieving process. The integers that remain are the Iucky numbers.

24,

25.

Find all lucky numbers less than 100,

Show that there are infinitely many lucky numbers.



26.

1.

&soth W

|

9

Py

10,
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Suppose that #;, is the smallest prime greater than O = py1p2 -+ P + b where p; is the

Jjth prime number.

) Show that 1, — O 4 1is not divisible by p; for j = 1.2,...,k

b) R. F. Fortune conjectured that f;, — Oy -+ 1 is prime for all positive integers k. Show
that this conjecture is true for all positive integers k with k < 5.

3.1 Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

Find the nth prime, where n is each of the following integers.

a} 1,000,000 b) 333,333,333 c) 1,000,000,000

. Find the smallest prime greater than each of the following integers.

a) 1,000,000 b) 100,000,000 ¢) 100,000,000,000

. Plot the nth prime as a function of n for 1 < n =< 100.

Plot 7 (x) for 1 < x < 500.

. Find the smallest prime factor of n1+ 1 for all positive integers n not exceeding 20

. Find the smallest prime factor of pyp; - - - pi + 1, where py, pa, . - ., Py are the kth

smallest primes for all positive integers k not exceeding 50.

. Use the sieve of Eratosthenes to find all primes less than 10,000,

8. Use the result given in Bxercise 18 to find 7 (10,000), the number of primes not exceeding

10,000,

Verify R. F. Fortune’s conjecture that £, — Oy + 1 is prime for all positive integers k,
where /. is the smallest prime greater than O = Hl;g; pj -+ 1foras many k as you can.

Find all lucky numbers (as defined in the preamble to Exercise 24) not exceeding 10,000.

Programming Projects

Write programs using Maple, Mathematica, or alanguage of your choice to do the following.

. Decide whether a given positive integer is prime, using trial division of the integer by all

primes not exceeding its square root.

. Use the sieve of Eratosthenes to find all primes less than n, where # is a given positive

integer.

Find mr{n), the number of primes less than or equal to », using Exercisc 18.

. Given positive integers @ and b not divisible by the same prime, find the smallest prime

number in the arithmetic progression an + b, where # is a positive integer.

Find the lucky numbers less than n, where n is a given integer (see the preamble to
Exercise 24).
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3.2 The Distribution of Primes

We know that there are infinitely many primes, but can we estimate how many primes
there are less than a positive real number x? One of the most famous theorems of number
theory, and of all mathematics, is the prime number theorem, which answers this question.

Mathematicians in the late eighteenth century examined tables of prime numbers
created using hand calculations. Using these values, they looked for functions that
estimated 7 (x). In 1798, French mathermatician Adrien-Marie Legendre (see Chapter 11
for a biography) used tables of primes up o 400,031, computed by Jurij Vega, to note
that 7 (x) could be approximated by the function

X
log x — 1.08366

The great German mathematician Karl Friedrich Gauss (see Chapter 4 fora biography)
conjectured that 7 (x) increases at the same rate as the functions
. *odt
x/logx and Li(x)= —
- 2 log !
(where fz'1r fg’—_, represents the area under the curve ¥ =1/ logt and above the t-axis from
t =210t =x). (The name Li is an abbreviation of logarithmic integral.)

Neither Legendre nor Gauss managed to prove that these functions approximated
7 (x) closely for large values of x. By 1811, a table of al] primes up to 1,020,000 had been
produced (by Chernac), which could be used to provide evidence for these conjectures,

The first substantial result showing that 77 (x} could be approximated by x /log x was
@f established in 1850 by Russian mathematician FPafnuty Lyvovich Chebyshev. He showed
that there are positive real numbers Crand Cy, with C; < 1 < C5, such that

Cilx/logx) < m(x) < Co(x/logx)

PAFNUTY LVOVICH CHEBYSHEV (1821-1894) was born on the estate
of his parents in Okatovo, Russia, His father was a retired army officer. In
1832, Chebyshev’s family moved to Moscow, where he completed his secondary
education with study at home. In 1837, Chebyshev entered Moscow University,
graduating in 1841, While still an undergraduate, he made his first original
contribution, a new method for approximating reots of equations. Chebyshev
joined the faculty of St, Petersburg University in 1843, where he remained until
1882, His doctoral thesis, written in 1849, was long used as a number theory
textbook at Russian universities. Chebyshev made contributions to many areas of mathematics besides
mumber theory, including probability theory, numerical analysis, and real analysis. He worked in
theoretical and applied mechanics, and had a bent for constructing mechanisms, including linkages
and hinges. He was a popular teacher, and had a strong influence on the development of Russian
mathematics,
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for sufficiently large values of x. (In particular, he showed that this result holds with
Cy = 0.929 and C, = 1.1.) He also demonstrated that if the ratio of 7 (x) and x/log x
approaches a limit as x increases, then this limit must be 1.

The prime number theorem, which states that the ratio of w(x) and x/log x ap-
proaches 1 as x grows without bound, was finally proved in 1896, when French

@C mathematician Jacques Hadamard and Belgian mathematician Charles-Jean-Gustave-

Nicholas de la Vallée-Poussin produced independent proofs. Their proofs were based
on results from the theory of complex analysis. They used ideas developed in 1859 by
German mathematician Bernhard Riemann, which related s (x) to the behavior of the

function
oQ

(=Y

n*
n=1

in the complex plane. (The function ¢ (s) is known as the Riemann zeta Sfunction.) The
connection between the Riemann zeta function and the prime numbers comes from the
identity
= 1 1
=3 —=[]a- }7')_!’
p

ne=l

3

JACQUES HADAMARD (1865-1963) was born in Versailles, France. His
father was a Latin teacher and his mother a distinguished piano teacher. After
completing his undergraduate studies, he taught at a Paris secondary school.
After receiving his doctorate in 1892, he became lecturer at the Faculté des
Sciences of Bordeaux. He subsequently served on the faculties of the Sorbonne,
the Collége de France, the Ecole Polytechnique, and the Ecole Centrale des Arts
et Manufactures. Hadamard made important contributions to complex analysis,
functional analysis, and mathematical physics. His proof of the prime number
theorem was based on his work in complex analysis. Hadamard was a famous teacher; he wrote
numerous articles about elementary mathematics that were used in French schools, and his text on
elementary geometry was used for many years.

CHARLES-JEAN-GUSTAVE-NICHOLAS DE LA VALLEE-POUSSIN
(1866-1962), the son of a geology professor, was born at Louvain, Belgium.
He studied at the Jesuit College at Mons, first studying philosophy, later turn-
ing to engineering. After receiving his degree, instead of pursuing a career in
engineering, he devoted himself to mathematics. De ia Valleé-Poussin's most
significant contribution to mathematics was his proof of the prime number theo-
rem. Extending this work, he established results about the distribution of primes
in arithmetic progression and the distribution of primes represented by quadratic
forms. Furthermore, he refined the prime number theorem to inclade error estimates. He made impor-
tant contributions to differential equations, approximation theory, and analysis. His textbook, Cours
d’analyse, had a strong impact on mathematical thought in the first half of the twentieth century.
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where the product on the right-hand side of the equation extends over all primes p. We
will explain why this identity is true in Section 3.5.

In addition to proving the prime number theorem, de 1a Vallée-Poussin showed that
the function Li(x) is a closer approximation to 7 (x) than x /(log x — a) for all values of
the constant a.

The proofs of the prime number theorem found by Hadamard and de la Valleé-

Poussin depend on complex analysis, though the theorem itself does not involve

complex numbers. This left open the challenge of finding a proof that did not use the

theory of complex variables. It surprised the mathematical community when, in 1949,

@ Norwegian mathematician Atle Selberg and Hungarian mathematician Pau! Erdés inde-

pendently found elementary proofs of the prime number theorem. Their proofs, though

elementary (meaning that they do not use the theory of complex variables), are guite
complicated and difficult.

We now formally state the prime number theorem.

Theorem 3.4. The Prime Number Theorem. The ratio of m(x) to x/log x approaches
1 as x grows without bound. (Here, log x denotes the natural logarithm of x and in the
language of limits, we have lim,_, ., w(x)/{x/log x) = 1)

Remark. A concise way to state the prime number theorem is to write 77 (x) ~ x/ log x.
Here the symbol ~ denotes “is asymptotic to.” We write a(x) ~ b(x) to denote that
lim, _, o, a(x)/b(x) = 1, and we say that a(x) is asymptotic to b(x).

The prime number theorem tells us that the ratio between x/log x and 7 (x) is close
to 1 when x is large. However, there are functions for which the ratio between these
functions and m{x) approaches 1 more rapidly than it does for x/log x. In particular, it

ATLE SELBERG (b. 1917), born in Langesund, Norway, became interested in
mathematics as a schoolboy, He was inspired by Ramanujan’s writing, both by
the mathematics and the “air of mystery” surrounding Ramannjan’s personality.
Selberg received his doctorate in 1943 from the University of Oslo. He remained
at the university until 1947, when he married and took a position at the Institute
for Advanced Study in Princeton. After a brief stay at Syracuse University,
he returned to the Institute for Advanced Study, where he was appointed a
permanent raember in 1949; he became a professor at Princeton University in
1951. Selberg received the Fields Medal, the most prestigious award in mathematics, for his work on
sieve methods and on the properties of the set of zeros of the Riemann zeta function. He is also well
known for his elementary proofs of the prime number theorem (also done by Paul Erds), Dirichlet’s
theorem on primes in arithmetic progressions, and the generalization of the prime number theorem
for primes in arithmetic progressions.

s
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x a(x) xflogx n(x)/@ Li(x) w(x)/Li(x)
103 168 144.8 1.160 178 | 0.9438202
104 1229 1085.7 1.132 1246 | 0.9863563
10° 9592 8685.9 1.104 9630 | 0.9960540
108 78498 723824 1.085 78628 | 0.9983466
107 664579 620420.7 1.071 664918 | 0.9998944
108 5761455 5428681.0 1.061 5762209 0.9998691
10° 50847534 48254942 .4 1.054 50849235 0.9999665
1010 455052512 434294481.9 1.048 455055614 | 0.9999932
101 4118054813 3948131663.7 1.043 4118165401 0.9999731
102 37607912018 36191206825.3 1.039 37607950281 0.9999990
1043 | 346065536839 | 334072678387.1 1.036 | 346065645810 | 10.9999997
1014 | 3204941750802 | 3102103442166.0 1.033 | 3204942065692 | 0.99999%59

Table 3.1 Approximations to m{x).

has been shown that Li(x) is an even better approximation. In Table 3.1, we see evidence
for the prime number theorem and that Li(x) is an excellent approximation of 7 (x). (Note
that the values of Li(x) have been rounded to the nearest integer.)

It is not necessary to find all primes not exceeding x to compute 7 (x). One way
to evaluate 7 (x) without finding all the primes less than x is to use a counting ar-

ErdGs made many significant contributions to combinatorics and to number theory. One of the
discoverics of which he was most proud was his elementary proof of the prime number theorem.
He also participated in the modern development of Ramsey theory, a part of combinatorics. Erdss
traveled extensively throughout the world to work with other mathematicians. He traveled from one
mathematician or group of mathematicians to the next, proclaiming, “My brain is open.” Erdfs wrote
more than 1500 papers, with almost 500 coauthors. Erdds offered monetary rewards for the solutions
of problems he found particularly interesting. Two recently published biographies ([Sc98] and [Ho%91])
give further details on his life and work.

PAUL ERDGS (1913-1996), born in Budapest, Hungary, was the son of high-
school mathematics teachers. When he was three years old, he could multiply
three-digit numbers in his head, and when he was four, he discovered negative
numbers on his own. At 17 he entered EStvSs University, graduating in four
years with a Ph.D. in mathematics. After graduating, he spent four years at
Manchester University, England, as a postdoctoral fellow. In 1938 he came to the
United States because of the difficult political situation in Hungary, especially
for Jews.
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gument based on the sieve of Eratosthenes (see Exercise 18 in Section 3.1). Efficient
ways of computing 7(x) requiring onlty O(x®/9+¢) bit operations have been de-
vised by Lagarias and Odlyzko (La0Od82]. The current world record is w(4-10%) =
783,964,159,847,056,303,858, found as part of a distributed computing effort on the
Internet. (Efforts to extend these computations to larger values of x have temporarity hit
a snag.)

- —_—— T e

]
The Riemann Hypothesis !
Many mathematicians consider the Riemann hyporhesis, a conjecture about the zeros of
the zeta function, the most important open problem in pure mathermatics. For more than
100 years, number theorists have struggled to solve this problem. Interest in it has spread,
perhaps because a prize of one million dollars for a proof (if it is indeed true) has been
offered by the Clay Mathematics Institute, Recently, many general-interest books about the
Riemann hypothesis, such as [De03], [8a03a], and {Sa03b], have appeared, even though the
hypothesis involves sophisticated notions from complex analysis. We will briefly describe
the Riemann hypothesis for the benefit of readers familiar with complex analysis, as well
as for the general appreciation of others,

We have defined the Riemann zeta function as £(s) = Zf:‘;l nl, This definition is valid
for all complex numbers s with Re(s) > 1, where Re(s) is the real part of the complex
number 5. Riemann was able to extend the function defined by the infinite series to a function
in the entire complex plane with a pole at s = 1. In his famous 1859 paper [Ri59], Riemann
connected the zeta function with the distribution of prime numbers. He derived a formula for
72{x} in terms of the zeros of £ (5). The more we understand about the focation of the zeros
of the zeta function, the more we know about the distribution of the primes, The Riemann
hypothesis is a statement about the location of the zeros of this function. Before stating
the hypothesis, we first note that the zeta function has zeros at the negative even integers
~2, —d4, —6, ..., called the frivial zeros. The Riemann hypothesis is the assertion that
the nontrivial zeros of ¢ (s) all have real patt equal to 1/2. Note that there is an equivalent
formulation of the Riemann hypothesis in terms of the error introduced when Li(x) is used
to estimate 7 (x); this alternative formulation does not involve complex variables. In 1901,
von Koch showed that the Riemann hypothesis is equivalent to the statement that the error
that oceurs when 7 (x) is estimated by Li(x) is O(x/? log x).

Many mashematicians believe the Riemann hypothesis is true, particularly because of
the wealth of evidence supporting it. First, a vast amount of numerical evidence has been
found. We now know that the first 2.5 x 10'! zeros (in order of increasing imaginary parts)
have real part equal to 1/2. (These computations were done by Sebastian Wedeniwski, who
has set up a distributed computing project to carry them out called ZetaGrid). Second, we
know that at least 40% of the nontrivial zeros of the zeta function are simple and have real
part equal to 1/2. Third, we know that if there are exceptions to the Riemann hypothesis,
they must be rare as we move away from the line Re(s) = 1/2. Of course, it is stifl possible
that this evidence is misleading us and that the Riemann hypothesis is not true, Perhaps this
famous problem will be resolved in the next few years, or maybe it will resist all attacks
for hundreds of years into the future. For more technical information about the Riemann
hypothesis, consult the article by Enrico Bomberi on the Web and [Ed0O1].
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How big is the nth prime? The prime number theorem has the following corollary,
which can be proved using calculus (see page 10 of [HaWr791).

Corollary 3.4.1. Let p, be the nth prime, where n is a positive integer. Then p, ~
nlogn.

What is the probability that a randomly selected positive integer is prime? Given that
there are approximately x/log x primes not exceeding x, the probability that x is prime
is approximately (x/log x)/x = 1/ log x. For example, the probability that an integer
near 10199 is prime is approximately 1/log 10190 22 1/2302. Suppose that you want to
find a prime with 1000 digits; what is the expected number of integers you must select
before you find a prime? The answer is that you must select roughly 1/(1/2302) = 2302
integers of this size before one of them will be a prime. Of course, you will need to check
each one to determine whether it is prime. In Chapter 6, we will discuss how this can be
done efficiently.

Gaps in the Distribution of Primes We have shown that there are infinitely many
primes and we have discussed the abundance of primes below a given bound x, but we
have yet to discuss how regularly primes are distributed throughout the positive integers.
We first give a result that shows that there are arbitrarily long runs of integers containing
no primes.

Theorem 3.5, For any positive integer n, there are at least n consecutive composite
positive integers.

Proof Consider the n consecutive positive integers
n+D1+2, m+)+3, ..., @+Di+n+L

When 2 < j <n+1, we know that j [ (n + 1) By Theorem 1.9 it follows that
j [ (n+ D1+ j. Hence, these n consecutive integers are all composite, =

One of the Largest Numbers Ever Appearing Naturally in a Mathematical Proof
Using ihe data in Table 3.1, we can show that for all x in the table, the difference Li(x) —
7(x) is positive and increases as x grows. Gauss, who onty had access to the data in the
first few rows of this table, believed this trend held for all positive integers x. However,
in 1914, the English mathematician J. E. Littlewood showed that Li{x) — 7 (x) changes
sign infinitely many times. In his proof, Littlewood did not establish a lower bound for
the first time that Li(x) — 7 (x) changes from positive to negative. This was done in 1933
by Samue} Skewes, a student of Littlewood’s, who managed to show that Li(x) — 7 (x)

chariges signs for at least one x with x < 10“’1034, a humongous number. This number,
known as Skewes’ constant, became famous as the largest number to appear naturally in a
mathematical proof, Fortunately, in the past seven decades, considerable progress has been
made in reducing this bound. The best current results show that Li(x) — #(x) changes sign
near x = 1,39822 x 10°16,
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Example 3.4, The seven consecutive integers beginning with 8!+ 2 = 40,322 are
all composite. (However, these are much larger than the smallest seven consecutive
composites, 90, 91, 92, 93, 94, 95, and 96.) <

Conjectures About Primes

Professional and amateur mathematicians alike find the prime numbers fascinating. It is
not surprising that a tremendous variety of conjectures have been formulated concerning
prime numbers. Some of these conjectures have been settled, but many stiil elude
resolution. We will describe some of the best known of these conjectures here,

Looking at tables of primes led mathematicians in the first half of the nineteenth
century to make conjectures that the distribution of primes satisfies some basic properties,
such as this following conjecture.

@i Bertrand’s Conjecture. In 1845, the French mathematician Joseph Bertrand conjec-
tured that for every positive integer # withn > 1, there is a prime p such thatn < p < 2n.
Bertrand verified this conjecture for all # not exceeding 3,000,000, but he could not pro-
duce a proof. The first proof of this conjecture was found by Pafnuty Lvovich Chebyshey
in 1852, Because this conjecture has been proved, it is often called Bertrand’s postulate.
(See Exercises 2224 for an outline of a proof.)

Theorem 3.5 shows that the gap between consecutive primes is arbitrarily long. On
the other hand, primes may often be close together. The only consecutive primes are 2
and 3, because 2 is the only even prime. However, many pairs of primes differ by two;
these pairs of primes are called twin primes. Examples are the pairs 3, 5 and 7, 11 and
13, 101 and 103, and 4967 and 4969,

@f Evidence seems to indicate that there are infinitely many pairs of twin primes. There
are 35 pairs of twin primes less than 10%; 8169 pairs less than 10%; 3,424,506 pairs less
than 10%; and 1,870,585,220 pairs less than 10'2. This leads to the following conjecture,

Twin Prime Conjecture. There are infinitely many pairs of primes p and p + 2.

JOSEPH LOUIS FRANCOIS BERTRAND (1822-1900) was born in Paris.
He studied at the Fcole Polytechnique from 1839 until 1841 and at the Ecole des
Mines from 1341 to 1844, Instead of becoming a mining engineer, he decided
to become a mathematician, Bertrand was appointed to a position at the Ecole
Polytechnigue in 1856 and, in 1862, he also became professor at the Collége
de France. In 1845, on the basis of extensive numerical evidence in tables of
primes, Bertrand conjectured that there is at least one prime between n and 21
forevery integer # with nt > 1. This result was first proved by Chebyshev in 1852,
Besides working in number theory, Berirand worked on probability theory and differential geomeiry.
He wrote several brief volumes on the theory of probability and on analyzing data from observations.
His book Calcul des probabilitiés, written in 1888, contains a paradox on continuous probabilities
now known as Bertrand’s paradox. Bertrand was considered to be kind at heart, extremely clever, and
full of spirit,
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In 1966, Chinese mathematician J. R. Chen showed, using sophisticated sieve
methods, that there are infinitely many primes p such that p + 2 has at most two prime
factors. An active competition is under way to produce new largest pairs of twin primes,
The current record for the largest pair of twin primes is 33,218,925 - 2169.690 4. | 3 pair
of primes with 51,090 digits each, discovered by Daniel Papp and Yves Gallot in 2602,

Viggo Brun showed that the sum 3 ivec o it pr2 prime 3 = (/3 + 1/5) +
(1/5+ 1/7) + (1/11 4 1/13) + - - - converges to a constant catled Brun’s constant, which
is approximately equal to 1.9021605824. Surprisingly, the computation of Brun’s con-
stant has played a role in discovering flaws in Intel’s original Pentium chip. In 1994,
Thomas Nicely at Lynchburg College in Virginia computed Brun’s constant in two dif-
ferent ways using different methods on a Pentium PC and came up with different answers.
He traced the error back to a flaw in the Pentium chip and he alerted Intel to this problem.
(Sce page 85 for more information about Nicely’s discovery.)

We now discuss perhaps the most notorious conjecture about primes.

Goldbach’s Conjecture. Every even positive integer greater than 2 can be written as the
sum of two primes.

Example 3.5. The integers 10, 24, and 100 can be written as the sum of two primes in
the following ways:

10=3+47=5+5,
24 =5+19=T+17=11+13,
100=3+97=11+89=17+83

=29 + 71 =41+ 59 =47+ 53. <

This conjecture was stated by Christian Goldbach in a letter fo Leonhard Euler in
1742. Tt has been verified for all even integers less than 4 - 104, with this limit increasing
as computers become more powerful. Usually, there are many ways to write a particular
even integer as the sum of primes, as Example 3.5 illustrates. However, a proof that there
is always at Ieast one way has not yet been found. The best result known to date is due
to . R. Chen, who showed {in 1966), using powerful sieve methods, that all sufficiently
large integers are the sum of a prime and the product of at most two primes,

Goldbach’s conjecture asserts that infinitely many primes occur as pairs of consec-
utive odd numbers. However, consecutive primes may be far apart. A consequence of

JING RUN CHEN {1933-1996) was a student of the prominent Chinese num-
ber theorist Loo Keng Hua. Chen was almost entirely devoted to mathematical
research. During the Cultural Revolution in China, he continued his research,
working almost all day and night in a tiny room with no electric lights, no table or
chairs, only 4 small bed and his books and papers. It was during this period that
he made his most important discoveries concerning twin primes and Goldbach’s
conjecture. Although he was a mathematical prodigy, Chen was censidered to
be next to hopeless in other aspects of life. He died in 1996 after a long iliness.
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the prime number theorem is that as n grows, the average gap between the consecutive
primes p, and p, ., is log n. Number theorists have worked hazd to prove results that
show that the gaps between consecutive primes are much smaller than average for in-
finitely many primes. For example, it has been shown that Putyi — Py < 0.248610gn
for infinitely many positive integers n. Showing that for every positive real number e,
there are infinitely many positive integers » such that (Pry1 — pu}/ log n < € remains
an elusive goal on the way toward the proof of Goldbach’s conjectire,

There are many conjectures concerning the number of primes of various forms, such
as the following conjecture,

The n? + 1 Conjecture. There are infinitely many primes of the form n2 + 1, where n
is a positive integer.

The smallest primes of the form n? + lare 5=22 41, 17=42 4+ 1, 37 =62 + i,
101=10% 41,197 =142+ 1,257 = 162 + 1, and 401 — 20? +- 1. The best result known

Pentium Chip Flaw

The story behind the Pentium chip flaw encountered by Thomas Nicely shows that answers
produced by computers should not always be trusted. A surprising number of hardware and
software problems arise that lead to incorrect computational results. This story also shows
that companies risk serious problems when they hide errors in their products. In June 1994,
testers at Intel discovered that Pentium chips did not always carry out computations cor-
rectly. However, Intel decided not to make public information about this problem. Instead,
they concluded that because the errar would not affect many users, it was unnecessary to
alert the millions of owners of Pentium computers, The Pentium flaw involved an incor-
rect implementation of an algorithm for floating-point division, Although the probability
is low that divisions of numbers affected by this error come up in a computation, such di-
visions arise in many computations in mathematics, science, and engineering, and even in
spreadsheets running business applications,

Later in that same month, Nicely came up with two different results when he used a
Pentium computer to compute Brun’s constant in different ways. In October 1994, after
checking all possible sources of computational error, Nicely contacted Intel customer sup-
port. They duplicated his computations and verified the existence of an error, Furthermore,
they told him that this error had not been previously reported, After not hearing any addi-
tional information from Intel, Nicely sent e-mail to a few people telling them about this.
These people forwarded the message (0 other interested parties, and within a few days, in-
formation about the bug was posted on an Internet newsgroup, By late November, this story
was reported by CNN, the New York Times, and the Associated Press.

Surprised by the bad publicity, Inte! offered to replace Pentium chips, but only for users
running applications determined by Intel to be vulnerable to the Pentium division flaw, This
offer did not mollify the Pentium user community. AH the bad publicity drove Intel stock
down several dollars a share and Intel became the object of many jokes, such as: “At Intel,
quality is job 0.999999998 ” Finally, in December 1994, Tntel decided to offer areplacement
Pentium chip upon request. They set aside almost half a biltion dollars to cover costs, and
they hired hundreds of extra employees to handle customer requests, Nevertheless, this story
does have a happy ending for Intel. Their corrected and improved version of the Pentium
chip was extremely successful.
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to date is that there are infinitely many integers » for which n? + 1is either a prime or the
product of two primes. This was shown by Henryk Iwaniec in 1973. Conjectures such
as the n? + 1 conjecture may be easy to state, but are sometimes extremely difficult to
resolve (see [Ri96] for more information}.

3.2 Exercises

1.
2,
3

Find the smallest five consecutive composite integers.
Find one million consecutive composite integers.

Show that there are no “prime triplets,” that is, primes p, p + 2, and p - 4, other than
3,5,and 7.

4, Find the smallest four sets of prime triplets of the form p, p+2, p+ 6.

5. Find the smallest four sets of prime triplets of the form p, p +4, p + 6.

6. Find the smallest prime between r and 2n when #n is

An unsettled conjecture asserts that for every positive integer n there is a prime between n

a) 3. ¢) 19,
b) 5. d) 31.
. Find the smallest prime between n and 21 when n is
a) 4. c) 23.
b} 6. d) 47,

2

and (n -+ 1)%

8. Pind the smallest prime between n? and (n + 1)? for all positive integers n with n < 10.

9. Find the smallest prime between n? and (n + 1)? for all positive integers n with 11 <

n =720,

10. Verify Goldbach’s conjecture for each of the following values of .

a) 50 c) 102 e) 200
b) 98 d) 144 1) 222

CHRISTIAN GOLDBACH (16%0-1764) was born in Kénigsberg, Prussia (the city roted
in mathematical circles for its famous bridge problem). He became professor of mathematics
at the Imperial Academy of St. Petersburg in 1725. In 1728, Goldbach went to Moscow to
tutor Tsarevich Peter IL In 1742, he entered the Russian Ministry of Foreign Affairs as astaff
member, Goldbach is most noted for his correspondence with eminent mathematicians, in
particular Leonhard Euler and Daniel Bernoulli, Besides his weli-known conjectures that
every even positive integer greater than 2 is the sum of two primes and that every odd
positive integer greater than S is the sum of three primes, Goldbach made several netable
contributions to analysis.




11.

12.
13,

14.

* 15,
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Goldbach also conjectured that every odd positive integer greater than 5 is the sum of
three primes. Verify this conjecture for each of the following odd integers,

ay7 c) 27 e) 101
b} 17 d) 97 f) 199

Show that every integer greater than 11 is the sum of two composite integers.

Show that Goldbach’s conjecture that every even integer greater than 2 is the sum of two
primes is equivalent to the conjecture that every integer greater than 5 is the sum of three
primes.

Let G(n) denote the number of ways to write the even integer # as the sum p + g, where
p and g are primes with p < g. Goldbach’s conjecture asserts that G(n) = 1 for all even
integers n with r > 2. A stronger conjecture asserts that G() tends to infinity as the
even integer n grows without bound.

a) Find G{n) for all even integers n with 4 < n < 30.

b) Find G(158).

¢) Find G(188).

Show that if # and k are positive integers with # > 1 and all n positive integers a, @ +
k,...,a+ {n — Dk are odd primes, then k is divisible by every prime less than »n,

Use Exercise 15 to help you solve Exercises 16-19.

16.

17.

18.

=19,

20,

* 21,

22.

* 23,

*% 24,

25,

Find an arithmetic progression of length six that begins with the integer 7 and where
every term is a prime.

Find the smallest possible minimum difference for an arithmetic progression that con-
tains four terms and where every term is a prime,

Find the smallest possible minimum difference for an arithmetic progression that con-
tains five terms and where every term is a prime.

Find the smallest possible minimum difference for an arithmetic progression that con-
tains six terms and where every term is a prime.

a) In 1848, A, de Polignac conjectured that every odd positive integer is the sum of a
prime and a power of two, Show that this conjecture is false by showing that 509 is
4 counterexample,

b} Find the next smallest counterexample after 509,

A prime power is an integer of the form p”, where p is prime and » is a positive integer
greater than 1. Find all pairs of prime powers that differ by 1. Prove that your answer is
correct.

Let n be a positive integer greater than 1 and let p;, py, ... ,p, be the primes not
exceeding n. Show that pyp, - - - p, < 4.

Let n be a positive integer greater than 3 and let p be a prime such that 2n/3 < p <n.

Show that p does not divide the binomial coefficient (2; ) ;

Use Exercises 22 and 23 to show that if » is a positive integer, then there exists a prime
psuchthatn < p < 2n. (This is Bertrand’s conjecture.)

Use Exercise 24 to show that if p,, is the nth prime, then p, < 2.
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26. Use Bertrand’s conjecture to show that every positive integer n with # = 7 is the sum of
distinct primes.

27. Use Bertrand’s postulate to show that % + nTl_] R Flm does not equal an integer
when n and i are positive integers.

* 28. In this exercise, we show that if #r is an integer with n > 4, then p, < pyps -+ - P,
where p,. is the kth prime. This result is known as Bonse’s inequality.

a) Let k be a positive integer. Show that none of the integers p1py - - - ppg-1— 1,
PPy Pe1-2—1 ... Dz pr_y - pp — 1 is divisible by one of the first
k — 1 primes and that if a prime p divides one of these integers, it cannot divide
another of these integers.

b) Conclude from part (a) that if # — & -+ 1 < p,, then there is an integer among those
listed in part (a) not divisible by p; for j =1,...,n. (Hint: Use the pigeonhole
principle.)

¢) Use part (b) to show that if # — &k + 1 < py, then p,,q < p1ps -+ p. Fix n and
suppose that k is the least positive integer such that n — k + 1 < pyr. Show that
n—k=zp. 1 —2andthat pp_; —2 >k when k > Sand that if n > 10, then k = 5.
Conclude that if u > 20, then p(,p) < papy -+ p for some k withr — k > k. Use
this to derive Bonse’s inequality when n > 10.

d) Check the cases when 4 < n < 10 to finish the proot.

29. Show that 30 is the largest integer n with the property that if k < » and there is no prime
p that divides both & and n, then k is prime. (Hint: Show that if r has this property and
n > p* where p is prime, then p | #. Conclude that if n > 72, then n must be divisible by
2,3,5,and 7. Apply Bonse’s inequality to show that such an n must be divisible by every
prime, a contradiction. Show that 30 has the desired property, but no n with 30 < n < 49
does.)

% 30. Show that p, P12 < pi- P2~ - - P, Where py is the kth prime whenever # is an integer
with n > 4. (Hint: Use Bertrand’s postulate and the work done in part (¢} of the proof of
Bonse’s inequality.

31. Show that p?l < Pp_1Pn—2Pn—3 Where py is the kth prime number and 2 > 6. Also, show
thatinequality does not hold whenn = 3, 4, or 5. (Hint: Use Bertrand’s postulate to obtain
Pp < 2Pr171 and P = 2pnw-2-)

32. Show that for every positive integer & there is an even number K so that there are more
than N pairs of successive primes such that K is the difference between these successive
primes. (Hint: Use the prine number theorem.}

3.2 Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Marhematica, or programs you have written,
carry out the following computations and explorations.

1. Verify as much of the information given in Table 3.1 as you can,
2. Find as many tuples of primes of the form p, p + 2, and p + 6 as you can.
3. Verify Goldbach’s conjecture for atl even positive integers less than 10,000,




3.2 The Distribution of Primes 89

4. Find all twin primes less than 10,000.

»m

=

by

Find the first pair of twin primes greater than each of the integers in Computation 1.

Plot 75{x), the number of twin primes not exceeding x, for 1 =x<1000and 1 <x <
10, 000.

Hardy and Littlewood conjectured that 713 (x), the number of twin primes not exceeding
x, is asymptotic to 2C,x/(log x)* where C, = HP>2(1 - G_I—Df) The constant C, is

approximately equal to 0.66016. Determine how accurate this asymptotic formula for
72(x) is for values of x as large as you can compute.

8. Compute Brun’s constant with as much accuracy as possible.

9. Explore the conjecture that G(), the number of ways to write the even integer » as

10.

11

12

13.
14

15

the sum p - ¢, where p and ¢ are primes with P < g, satisfies G{n) > 10 for all even
integers n with n > 188,

An unsettled conjecture asserts that for every positive integer n, there is an arithmetic
progression of length » comprised of n consecutive prime numbers. The longest such
arithmetic progression currently known consists of 22 consecutive primes. Find arith-
metic progressions consisting of three consecutive primes with all primes less than 100
and four consecutive primes with all primes less than 500,

Show that all terms of the arithmetic progression of length five that begins with 1464481
and has common difference 210 are prime.

Show that all terms of the arithmetic progression of length twelve that begins with 23143
and has common difference 30030 are prime.

Find an arithmetic progression containing ten primes that begins with 199,

An unsettfed conjecture asserts that for all positive integers n, there is a prime p such
thatn? < p < (n + H2 Verify this conjecture for as many positive integers n as you can.

Explore the conjecture that every even integer is the sum of two, not necessarily distinct,
Iucky numbers. Continue by exploring the conjecture that given a positive integer k, there
is a positive integer » that can be expressed as the sum of two lucky numbers in exactly
k ways,

Programming Projects

Write programs using Maple, Mathematica, or a Tanguage of your choice to do the following.

1

2,
3

4,

5.

Verify Goldbach’s conjecture for all even integers less than n, where r is a given positive
integer.

Find all twin primes less than 1, where n2 is a given positive integer,

Find the first m primes of the form n? + 1, where n is a positive integer and m is a given
positive integer.

Find G(n), the number of ways to write the even integer 1 as the suin p + g, where p
and g are primes with p < g.

Given a positive integer #, find as many arithmetic progressions of length n, where every
term is a prime.
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Greatest Common Divisors

If g and b are integers, not both 0, then the set of common divisors of @ and & is a finite
set of integers, always containing the integers +1 and —1, We are interested in the largest
integer among the conumon divisors of the two integers.

Definition. The greatest common divisor of two integers a and b, which are not both
0, is the largest integer that divides both g and b.

The greatest common divisor of @ and b is written as (a, b). (Note that the notation
ged(a, b) is also used, especially outside of number theory. We will use the traditional
notation (a, b} here, even though it is the same notation used for ordered pairs.) We also
define {0, 0) = 0.

Even though every positive integer divides 0, we define (0, 0) = 0. This is done to
ensure that the results we prove about greatest common divisors hold in all cases.

Example 3.6, The common divisors of 24 and 84 are +1, +2, £3, +4, £6, and
+12. Hence, (24, 84) = 12. Similarly, looking at sets of common divisors, we find that
(15,81) =3, (100, 5) =5,(17,25) = 1, (0, 44) = 44, (6, —15) = 3, and (17, 289) =
17. -«

We are particularly interested in pairs of integers sharing no common divisors greater
than 1. Such pairs of integers are called relatively prime.

Definition. The integers a and b are relatively prime if a and b have greatest common
divisor (a,b) = 1.

Example 3.7. Since (25,42) = 1, 25 and 42 are relatively prime. <

Note that since the divisors of —a are the same as the divisors of a, it follows that
(a,b) = (|al, |b]) (Where |a| denotes the absolute value of a, which equals ¢ if @ > 0 and
—a if a < 0). Hence, we can restrict our attention to the greatest conunon divisors of
pairs of positive integers.

In Example 3.6, we noted that (15, 81) = 3. If we divide 15 and 81 by (15,81) =3,
we obtain two relatively prime integers, 5 and 27. This is no surprise, because we have
removed afl common factors. This illustrates the following theorem, which tells us that
we obtain two relatively prime integers when we divide each of two original integers by
their greatest common divisor.

Theorem 3.6. Let a and b be integers with (a,b) = d. Then (¢/d, b/d) =1,

Proof. Let a and b be integers with (a, b) = d. We will show that a/d and b/d have
no common positive divisors other than 1. Assume that e is a positive integer such that
e | {a/d) and e | (b/d). Then, there are integers k and [ with a/d = ke and b/d =le,

. g0 that @ = dek and b = del. Hence, de is a common divisor of @ and b. Since d is
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the greatest common divisor of @ and b, de < d, so that ¢ must be 1. Consequently,
(a/d,b/d)=1. ) (]

‘We do not change the greatest common divisor of two integers when we add a
muitiple of one of the integers to the other. In Example 3.6, we showed that (24, 84) = 12.
When we add any multiple of 24 to 84, the greatest common divisor of 24 and the resulting
number is still 12, For example, since 2 - 24 =48 and (—3) . 24 = —72, we see that
(24,84 - 48) = (24, 132) = 12 and (24, 84 + (—72)) = (24, 12) = 12. The reason for
this is that the common divisors of 24 and 84 are the same as the common divisors of
24 and the integer that results when a muitiple of 24 is added to 84. The proof of the
following theorem justifies this reasoning.

Theorem 3.7, Leta, b, and ¢ be integers, Then (a + cb, b) = (a, b).

Proof. Let a, b, and c be integers. We will show that the common divisors of ¢ and
b are exactly the same as the common divisors of a + ¢k and b. This will show that
{a + cb,b) = (a, b). Let e be a common divisor of ¢ and b, By Theorem 1.9, we see that
e | {a + ¢b), so that e is a common divisor of @ + cb and b. If £ is a common divisor of
a + cb and b, then by Theorem 1.9, we see that f divides (@ + ¢b) — cb = a, so that f
is a common divisor of g and b. Hence, (& + ¢b, b) = (a, b). =

We will show that the greatest common divisor of the infegers @ and b, not both 0,
can be written as a sum of multiples of @ and b. To phrase this more succinctly, we use
the following definition.

Definition. If a and b are integers, then a linear combination of a and b is a sum of
the form ma + nb, where both m and n are integers.

Example 3.8. What are the linear combinations 9m + 15#n, where m and n are both
integers? Among these combinations are —6=1-94 (-1} - 15; =3 =(-2)94- 1. 15;
0=0.94+0-153=2-94(-1-156=(—1)-9+ 1. 15; and so on. It can be shown

that the set of all linear combinations of 9 and 15isthe set {. .., 12, -9, -6,-3,0,3,
6,9,12,.. .}, as the reader should verify after reading the proofs of the following two
theorems. -«

In Example 3.8, we found that (9, 15) = 3 appears as the smallest positive linear
combination with integer coefficients of 9 and 15. This is no accident, as the following
theorem demonstrates.

Theorem 3.8. The greatest cominon divisor of the integers @ and b, not both 0, is the
ieast positive integer that is a linear combination of @ and b,

Proof. Letd be the least positive integer that is a linear combination of a4 and b, (There
is a feast such positive integer, using the well-ordering property, since at least one of two
linear combinations 1. a + 0 - b and (—L)a + 0 - b, where a # 0, is positive.) We write

(3.1) d=ma—+ nb,

where m and n are integers. We will show thatd |¢ and d | b.
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By the division algorithm, we have
a=dg+r, 0<r<d.
From this equation and (3.1}, we see that
r=a—dg=a—q(ma+nb)=(1—gmda - gnb.

This shows that the integer 7 is a linear combination of 4 and b. Since 0 < r < d, and
d is the least positive linear combination of ¢ and 4, we conclude that r == 0, and hence
d | a. In a similar manner, we can show that d | &.

We have shown that d, the least positive integer that is a linear combination of
a and b, is a common divisor of a and b. What remains to be shown is that it is the
greatest common divisor of @ and b. To show this, all we need show is that any common
divisor ¢ of ¢ and b must divide d, since any proper positive divisor of d is less than d.
Since d = ma -+ nb, if ¢ | a and ¢ | b, Theorem 1.9 tells us that ¢ | 4, so that d = ¢. This
concludes the proof. u

Because we will often need to apply Theorem 3.8 in the case where @ and b are
relatively prime integers, we state the following corollary.

Corollary 3.8.1. If ¢ and b are relatively prime integers, then there are integers m and
rt such that ma +nb = 1.

Proof To prove this corollary, we note that if @ and b are relatively prime, then
{a,b) = 1. Consequently, by Theorem 3.8, 1 is the least positive integer that is a linear
combination of g and b. It follows that there are integers m and n such that ma +nb = 1.

L

Theorem 3.8 is valuable: We can obtain results about the greatest common divisor
of two integers using the fact that the greatest common divisor is the least positive linear
combination of these integers. Having different representations of the greatest common
divisor of two integers allows us to choose the one that is most useful for a particular
purpose. This is illustrated in the proof of the following theorem.

Theorem 3.9, If ¢ and b are positive integers, then the set of linear combinations of a
and b is the set of integer multiples of (g, b).

Proof. Suppose that d = (a, b). We first show that every linear combination of a and &
must also be a multiple of d. First note that by the definition of greatest common diviser,
we know that d | ¢ and d | b, Now every lincar combination of @ and b is of the form
ma + nb, where m and n are integers. By Theorem 1.9, it follows that whenever m and
m are integers, d divides ma + nb. That is, ma - nb is a multiple of d.

We now show that every multiple of d is also a linear combination of a and &. By
Theorem 3.8 we know that there are integers r and s such that {(a, ) = ra + sb. The
multiples of d are the integers of the form jd, where j is an integer. Multiplying both
sides of the equation d = ra + sb by j, we see that jd = (jr)a -+ {js)b. Consequently,
every multiple of d is a linear combination of a and b. This completes the proof. u
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We have defined greatest common divisors using the notion that the integers are
ordered. That is, given two distinct integers, one is larger than the other. However, we
can define the greatest common divisor of two integers without relying on this notion of
order, as we do in Theorem 3.10. This characterization of the greatest common divisor of
two integers not depending on ordering is generalized in the study of algebraic number
theory to apply fo what are known as algebraic number fields,

Theorem 3.10. If @ and b are integers, not both 0, then a positive integer d is the
greatest common divisor of a and b if and only if:

(iy dlaandd|b
(ii) ifcisaninteger withc |ag andc | b, thenc | d.

Progf.  'We will first show that the greatest common divisor of g and » has these two
properties. Suppose that = (a, b). By the definition of common divisor, we know that
d|aandd | b. By Thearem 3.8, we know that d = ma + nb, where m and n are integers.
Consequently, if ¢ | a and c | b, then by Theorem 1.9, ¢ } d = ma 4 nb. We have now
shown that if d = {(a, b), then properties (i) and (ii) hold.

Now assume that properties (i) and (ii) hold. Then we know that 4 is a common
divisor of @ and b. Furthermore, by property (i), we know that if ¢ is a common divisor
of a and b, then ¢ | d, so that d = ck for some integer k. Hence, c =d/k <d. (We
have used the fact that a positive integer divided by any nonzero integer is less than that
integer.) This shows that a positive integer satisfying (i) and (i) must be the greatest
commeon divisor of g and b. [

We have shown that the greatest common divisor of ¢ and b, not both 0, is a
linear combination of ¢ and 5. However, we have not explained how to find a par-
ticular linear combination of @ and & that equals (a, b). In the next section, we will
provide an algorithm that finds a particular linear combination of @ and b that equals
(a, b).

We can also define the greatest common divisor of more than two integers.

Definition. Letay, ay,...,a, be integers, not all 0. The greatest common divisor of
these integers is the largest integer that is a divisor of all of the integers in the set. The
greatest common divisor of ay, ay, . . ., a, is denoted by (4, as, . . ., a,). (Note that the
order in which the a;’s appear does affect the result.)

Example 3.9, We easily see that (12, 18, 30) = 6 and (10, 15,25) = 5. <

We can use the following lemma to find the greatest commeon divisor of a set of more
than two integers.

Lemma 3.2, If a;,ay,...,a, are integers, not all 0, then (a;, a3, ...,a,_1,a,) =
(a1, L2 P v 1 (G,bl, an))'
Proof. Any common divisor of the n integers ay, ay, . . ., a,_1, a, is, in particular, a

divisor of ¢, and a,,, and therefore a divisor of (a,_,, a,,). Also, any common divisor
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of the i1 — lintegers ay, &y, . - - , dy_g, and (a,_y, @, must be a common divisor of alln
integers, for if it divides (a,_}, @,), it must divide both a,_ and a,. Since the set of 1
integers and the set of the first n — 2 integers together with the greatest common divisor
of the last two integers have exactly the same divisors, their greatest common divisors
are equal. ]

Example3.10. 'To find the greatest common divisor of the three integers 105, 140, and
350, we use Lemma 3.2 to see that (105, 140, 350) = (105, (140,350)) = (105,70) =35.
«

Example 3,11, Consider the integers 15, 21, and 35. We find that the greatest common
divisor of these three integers is 1 using the following steps:

(15,21, 35) = (15, (21,35)) = (15, ) = 1.

Each pair among these integers has a common factor greater than 1, since (15,21) =3,
(15,35 =35,and (21,35) =7 <

Example 3.11 motivates the following definition.

Definition. We say that the integers ay, ay, . . ., a, are mutually relatively prime if
(@, @y, . . ., a,) = 1. These integers are called painwise relatively prime if, for each pair
of integers ¢; and a; with { 3 j from the set, (a;,a) =1; that is, if each pair of integers
from the set is relatively prime.

The concept of pairwise relatively prime is used much more often than the concept
of mutually relatively prime. Also, note that pairwise relatively prime integers must be
mutually relatively prime, but that the converse is false (as the integers 15, 21, and 35 in
Exampie 3.11 show).

3.3 Exercises

1. Find the greatest common divisor of each of the following pairs of integers.

a) 15,35 d) 99, 100
b} 0, 111 ey 11, 121
c) —12,18 £) 100, 102
2. Find the greatest common divisor of each of the following pairs of integers.
a) 5,15 d) —90, 100
b) 0, 100 e) 100, 121
c) —27, —45 £) 1001, 289

3. Let a be a positive integer. What is the greatest common divisor of @ and 2a?
4. Let a be a positive integer. What is the greatest common divisor of @ and a*?

5. Let a be a positive integer. What is the greatest common divisor of @ and @ + 17
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. Let a be a positive integer. What is the greatest common divisor of @ and a -+ 27

. Show that if # and-b are integers, not both 0, and ¢ is a nonzero integer, then (ca, cb) =

lel(a, b).

. Show that if @ and b are integers with (@, by = L, then (a + b,a — by =lfor 2.

. Whatis (22 + b2, a + b), where g and b are relatively prime integers that are not both 0?

Show that if ¢ and b are both even integers that are not both 0, then (g, b) = 2(a/2, b/2).
Show that if @ is an even integer and & is an odd integer, then (a, b) = (a/2, b).

Show that if 4, b, and ¢ are integers such that (g, b) =l and ¢ | (@ + b), then {¢c,a) =
(e,b)=1.

Show that if , b, and ¢ are mutually relatively prime nonzero integers, then (g, bc) =
(a, b)(a, c).

a) Show thatif @, b, and c are integers with {a, b) = (a,c) = 1, then {(a, be) = L.

b) Use mathematical induction to show that if a;, ay, . . . , a, are integers, and b is
another integer such that (ay, b) = (ap, b} = - - = (a,, &) = 1, then (@135 - - - @,, b)
=1

Find a set of three integers that are mutually relatively prime, but any two of which are
not relatively prime. Do not use examples from the text,

Find four integers that are mutually relatively prime such that any three of these integers
are not mutuaily relatively prime,

Find the greatest common divisor of each of the following sets of integers.
) 8, 10, 12 d) 6, 15,21
b) 5, 25,75 e) —7, 28, —35

¢} 99, 9999,0 10,0, 1001
Find three mutually relatively prime integers from among the integers 66, 105, 42, 70,
and 165.

Show that if ay, ay, . . . , a, are integers that are not all 0 and ¢ is a positive integer, then
{caj,cay, ..., ca)=clayay...,a,).

Show that the greatest common divisor of the integers a, a,,. . . , a,, not all 0, is the
least positive integer that is a linear combination of ay, as, . . . , a,.

Show that if k is an integer, then the integers 6k — 1,6k + 1,6k + 2,6k 4 3, and 6k + 5
are pairwise relatively prime.

Show that if k is a positive integer, then 3k + 2 and 5k + 3 are relatively prime.
Show that 8a + 3 and 5a + 2 are relatively prime for all integers a.
Show that if @ and b are relatively prime integers, then (a + 2b,2a +b) = I or 3,

Show that every positive integer greater than 6 is the sum of two relatively prime integers
greater than 1.
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The Farey series J,, of order n is the set of fractions h/k, where h and & are integers,
O<h<k=n, and (h, k) =1, in ascending order. We include 0 and 1 in the forms 0/ and
1/1, respectively. For instance, the Farey series of order 4 is

0111231

TEYYYaT
Exercises 26-29 deal with Farey series.
26. Find the Farey series of order 7.
# 27, Show thatif a/b, c/d, and e/ f are successive terms of a Farey series, then

c_ate
d b+f

* 28, Show that if a/b and ¢/d are successive terms of a Farey series, then ad — be = —L

* 29, Show that if a/b and ¢/d are successive terms of the Farey series of order n, then
b+4d=n.

JOHN FAREY (1766-1826) attended school in Woburn, England, until the age of 16. In
1782, he entered a school in Halifax, Yorkshire, where he studied mathematics, drawing,
and surveying. In 1790, he married and his first son was born the following year. In 1792,
the Duke of Bedford appointed Farey as land steward for his Wobum estates. Farey held
this post until 1802, developing expertise in geology. When the duke died suddenly, the
duke’s brother dismissed Farey, who went to London and established an extensive practice
as a surveyor and geologist.

Farey’s geologic work included studies of soils and strata in Derbyshire. He also
produced a map of the strata visible between London and Brighton. Farey also produced
extensive scientific writings, publishing around 60 articles in philosophical and scientific
magazines, These articles address a wide range of topics, including geology, forestry,
physics, and many other areas.

Although he achieved moderate fame as a geologist, ironically Farey is remembered
for a contribution to mathematics. In his four-paragraph 1816 article, “On a curious property
of vulgar fractions,” Farey noted that a reduced fraction p/g withO < p/g < land g <n
equals the fraction whose numerator and denominator are the sum of the numerators and the
sum of the denominators, respectively, of the fractions on either side of p/g when ali reduced
fractions between O and 1 with denominators not exceeding » are written in increasing order
(see Exercise 27). Farey said he was unaware whether this property was already known. He
also wrote that he did not have a proof. The French mathematician Cauchy read Farey’s
article and proved this property in the book Exercises de mathématigue, published in 1816.
It was Cauchy who coined the name Farey series because he thought Farey was the first
person to notice this property.

Not surprisingly, Farey was not the first person to netice the property for which he
became famous. In 1802, C. Haros wrote an article in which he approximates decimal
fractions using common fractions, constructing the Farey sequence for n = 99 employing
this curious property in his construction.
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# 30. a) Show that if @ and & are positive integers, then ((a" — b)fla—bha—b =
(la, byt a — b,
b) Show thatif a and b are relatively prime positive integers, then
((a" =) /(a —b),a —b) = (n,a — b).

31. Showthatifa, b, ¢, and d are integers such that » and  are positive, (a, b) = (¢, d) = 1,
and 7 + S is an integer, then b = 4.

32. What can you conclude if a, b, and ¢ are positive integers such that (a,b) =(b,c) =1
and 1 + £ -+ Lis an integer?

33, Show that if ¢ and & are positive integers, then (a, by=2 Z‘i’:{bi fal+a+ b —ab,
(Hint: Count the number of lattice points, that is, points with integer coordinates, inside
or on the triangle with vertices {0, 0}, (0, b), and {(a, 0) in two different ways.)

34. Show that if n is a positive integer and / and j are integers with 1 <7 < j <n, then
i+ Lnl-j4 D=1

35, Use Exercise 34 to show that there are infinitely many primes. (Hint: Assume that there
are exactly r primes and consider the » -+ 1 numbers (r+D!+i+ 1 This proof was
discovered by P. Schom.)

36. Show that if ¢ and d are relatively prime positive integers, then the integers a =
0,1.2,...,defined by ay = c and 4 =dgay - - a,_1+dforn=1,2,...,are pairwise
relatively prime.

Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Meaple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Construct the Farey series of order 100,

2, Verify the properties of the Farey series given in Exercises 27, 28, and 29 for successive
terms of your choice in the Farey series of order 100,

Programming Projects

Write programs using Maple, Mathematica, or a Ianguage of your choice to do the following,
1. Find the greatest common divisor of two integers from the lists of their divisors.

2. Print out the Farey series of order 1 for a given positive integer n.

The Euclidean Algorithm

We are going to develop a systematic method, or algorithm, to find the greatest common
divisor of two positive integers. This method is called the Euclidean algorithm. Tt is
named after the ancient Greek mathematician Exclid » Who describes this algorithm in his
Elements. {The same method for finding greatest common divisors was also described in
the sixth century by the Indian mathematician Aryabhata, who called it “the pulverizer”)
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Before we discuss the algorithm in general, we demonstrate its use with an ex-
ample. We find the greatest common divisor of 30 and 72. First, we use the division
algorithm to write 72 =302 4 12, and we use Theorem 3.7 to note that (30,72) =
(30,72 — 2 - 30) = (30, 12). Note that we have replaced 72 by the smaller number
12 in our computations because (72, 30) = (30, 12). Next, we use the division algo-
rithm again to write 30 =2 - 12 4 6. Using the same reasoning as before, we see that
(30, 12) == (12, 6). Because 12 = 6 - 2 + 0, we now see that {12, 6) = (6, 0) = 6. Conse-
quently, we can conclude that (72, 30) = 6, without finding all the common divisors of
30 and 72.

We now present the general form of the Euclidean algorithm for compuiing the
greatest common divisor of two positive integers.

Theorem 3.11. The Euclidean Algorithm. Let ry=a and ry = b be integers such
that @ > b > 0. If the division algorithm is successively applied to obtain r; = r;119711
+7 42 with 0 <rjp9 <7y for j=0,1,2,...,n —2and r, =0, then (g, b) = ry,
the last nonzero remainder. =

From this theorem, we see that the greatest commeon divisor of a@ and & is the last
nonzero remainder in the sequence of equations generated by successively applying
the division algorithm and continuing until a remainder is 0—where, at each step, the
dividend and divisor are replaced by smaller numbers, namely the divisor and remainder.

To prove that the Euclidean algorithm produces greatest common divisors, the
following lemma will be helpful.
Lemma 3.3. If e and 4 are integers and e = dg + r, where g and r are integers, then
(e, d)y={(d,r).

Proof. This lemma follows directly from Theorem 3.7, takinga=r,b=d,andc=gq.
' |

We now prove that the Euclidean algorithm produces the greatest common divisor
of two integers,

EUCLID (c, 350 B.c.B) was the author of the most successful mathematics
textbook ever written, namely his Elements, which has appeared in over a
thousand editions from ancient to modern times. Very little is known about
Euclid’s life, other than that he taught at the famed academy at Alexandria.
Evidently he did not stress the applications of mathematics, for it is reputed that
when asked by a student for the use of geometry, Euclid had his slave give the
student some coins, “since he must needs make gain of what he learns.” Euclid’s
Elements provides an introduction to plane and solid geometry, and to number
theory. The Euclidean algorithm is found in Book VII of the thirteen books in the Elements, and his
proof of the infinitude of primes is found in Book IX. Euclid also wrote hooks on a variety of other
topics, including astronomy, optics, music, and mechanics.
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Proof, letry=aandr; = b be positive integers with a > b, By successively applying
the division algorithm, we find that

ro =11+ 0=ry<ry
Fl =t + 13 0=<r3<r,
Timpa =Ty 1d; 1+7; O<rj<riy,

Iyeg=ry3@patr_o 0=r,_5<r_;

Tp3=Tnadn 2t 0=r,_1<r_s,

n-2 =Iy p—1t " Ofrlt <Ip-1

Pyt =Tp4y-
‘We can assume that we eventually obtain a remainder of zero, because the sequence
of remainders o =1y = ry > 13 > - - - > () cannot contain more than a terms (because
each remainder is an integer). By Lemma 3.3, we see that (a, b) = (1, 1) = (rp. 12) =

(rZs "3) == (rn—3s ru—Z) = (rn—2= ru-—l) = (1 ?‘") = (rm 0= - Hence, (a,b) =
. the last nonzero remainder. |

We illustrate the use of the Euclidean algorithm with the following example.

Example 3.12. The steps used by the Euclidean algorithm to find (252, 198) are
252=1-198+ 34

198=3-54 + 136
54=1-36+418
36=2-18.

ARYABHATA (476-550) was bomn in Kusumapura (now Patna), India. He is the author
of the Aryabhatiya, a summary of Hindu mathematics written entirely in verse. This baok
covers astronomy, geometry, plane and spherical trigonometry, arithmetic, and algebra.
Topics studied include formulas for areas and volumes, continued fractions, sums of power
series, an approximation for s, and tables of sines. Aryabhata also described a method for
finding greatest common divisors which is the same as the method described by Euclid. His
formulas for the areas of triangles and circles are correct, but those for the volumes of spheres
and pyramids are wrong. Aryabhata also produced an astronomy text, Siddhanta, which
includes a number of remarkably accurate statements (as well as other statements that are
not correct), For example, he states that the orbits of the planets are ellipses, and he correctly
deseribes the causes of solar and lunar eclipses. India named its first satellite, launched
in 1975 by the Russians, Aryabhata, in recognition of his fundamental contributions to
astronomy and mathematics.
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We summarize these steps in the following table:

Fi Tigr djp1 Vi42
252 198 1 54
198 54 3 36
54 36 1 18

3 36 18 2 0

[ AT S SN

‘The last nonzero remainder (found in the next-to-last row in the last column) is the
greatest common divisor of 252 and 198. Hence, (252, 198) = 18. -«

The Buclidean algorithm is an extremely fast way to find greatest cornmon divisors.

Later, we will see this when we estimate the maximum number of divisions used
by the Euclidean algorithm to find the greatest common divisor of two positive integers.
However, we first show that, given any positive integer #, there are integers @ and & such
that exactly n divisions are required to find {a, ) using the Euclidean algorithm. We can
find such numbers by taking successive terms of the Fibonacci sequence.

The reason that the Euclidean algorithm operates so slowly when it finds the greatest
common divisor of successive Fibonacci numbers is that the quotient in all but the last
step is 1, as illustrated in the following examnple.

Example 3.13. We apply the Euclidean algorithm to find (34, 55). Note that f5 =34
and fijg = 55. We have

55=34.1421
34=21.1+4+13
21=13.1+8
13=8-145
8=5-143
5=3.142
3=2.1+41
2=1.2.

Observe that when the Euclidean algorithm is used to find the greatest common divisor of
Jo =234 and f;; = 55, a total of eight divisions are required. Furthermore, (34, 55) =1,
since 1 is the last nonzero remainder. «

The following theorem tells us how many divisions are used by the Euclidean
algorithm to find the greatest common divisor of successive Fibonacei numbers.

Theorem 3.12. Let f,,, and f, - be successive terms of the Fibonacci sequence,
with r > 1. Then the Euclidean algorithm takes exactly n divisions to show that

(fn+h f;1+2) = L
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Proof.  Applying the Euclidean algorithm, and using the defining relation for the Fibo-
nacci numbers fi=fia+r ;2 in each step, we see that

f;t+2 = fn+1 14 Jus
f;z+1 =fu 1+ fnﬁls

*

Ja=f3- 14 f,

f=f-2
Hence, the Euclidean algorithm takes exactly n divisions, to show that ( Juv2 fop) =
f=1L |

The Complexity of the Euclidean Algorithin . We can now prove a theorern first proved
by Gabriel Lamé, a French mathematician of the nineteenth century, which gives an
estimate for the number of divisions needed o find the greatest common divisor using
the Euclidean algorithm.

Theorem 3.13. Lamé’s Theorem. The number of divisions needed to find the greatest
common divisor of two positive integers using the Euclidean algorithm does not exceed
five times the number of decimal digits in the smaller of the two integers.

Proof. 'When we apply the Euclidean algorithm to find the greatest common divisor of
a =ryand b =r| with @ > b, we obtain the following sequence of equations:

o =nq+on, O=ry<ry
¥y =g+, 0<ry<rs,
Tneo = Fp_1Gu_1+ Iy, 0= Tp <Fy 1y
p—1= ply.

We have used n divisions. We note that each of the quotients g, g, . . ., g,_; = 1, and
4y = 2, because r,, < r,,_;. Therefore,

GABRIEL LAME (1795-1870) was 2 graduate of the Feole Polytechnique.
A civil and raibway engineer, he advanced the mathematical theory of elasticity
and invented curvilinear coordinates. Althou gh his main contributions were to
mathematical physics, he made several discoveries in number theory, including
the estimate of the number of steps required by the Euclidean algorithm, and
the proof that Fermat’s last theorem holds for n =7 (see Section 13.2). It
is interesting to note that Gauss considered Lamé 1o be the foremost French
mathematician of his time,
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r,=1=f,
1= 2r, 22 = fa,
Fpea 2tttz fit fo=Ja
Te3Z etz s+ =1

razr3tr = fuit fua =t
b:r'12r2+1'3 =t fn—l = fn-H'

Thus, for there to be n divisions used in the Euclidean algorithm, we musthave b > f,,- FRP
By Example 1.28, we know that f, 1> a"!for n = 2, where & = (14 +/5)/2. Hence,
b > "1, Now, since log, & > 1/5, we see that

logigb >~ Nlogpe > {n—1)/5.
Consequently,
n—1<5-logyb.

Let b have & decimal digits, so that b < 10% and log;y b < k. Hence, we see that
it — 1 < 5k, and because k is an integer, we can conclude that # < 5k. This establishes
L.amé’s theorem. [

The following result is a consequence of Lamé’s theorem. It tells us that the
Euclidean algorithm is very efficient.
CoroHary 3.13.1. The greatest conunon divisor of two positive integers a and & with

a > b can be found using O((log, a)?) bit operations.

Proof We know from Lamé’'s theorem that Of(log, a) divisions, each taking
O {(log, a)?) bit operations, are needed to find (a, b). Hence, by Theorem 2.3, (a, b)
may be found using a total of O({log, a)®} bit operations. a

Expressing Greatest Common Divisors—As Linear Combinations The Euclidean
algorithm can be used to express the greatest common divisor of two integers as a linear
combination of these integers. We illustrate this by expressing (252, 198) = 13 as alinear
combination of 252 and 198. Referring to the steps of the Euclidean algorithm used to
find (252, 198), by the next to the last step we see that

18=54—-1.36.
By the preceding step, it follows that
36=198 —3.54,
which implies that

183=54 —1-(198-3-54)=4.54—1-193.
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Likewise, by the first step, we have
54 =252 —1-198,
so that
18=4(252 —1-198) —1- 198 =4-252 — 5. 198,
This last equation exhibits 18 = (252, 198) as a linear combination of 252 and 198.

In general, to see how d = (a, b) may be expressed as a linear combination of ¢ and
b, refer to the series of equations that is generated by the Euclidean algorithm. By the
penultimate equation, we have
rp=Aa,b)=r, 5 — ry19n-1-

This expresses (a, b) as a linear combination of r,,_, and r,_;. The second to the last
equation can be used to express r,_1 as r,,_3 — F_24g,_2. Using this last equation to
eliminate 7,,_| in the previous expression for {a, &}, we find that

Iy =rp 3= Ty_24p-2s
so that
{@a.b)=ry o~y 3— Fn_2Gn-2)Gn—1
=1+ gyetGn-2n 2~ Gu1rn—3

which expresses (@, b) as a linear combination of r,,_, and r,_;. We continue working
backward through the steps of the Euclidean algorithm to express {a, &) as a linear
combination of each preceding pair of remainders, until we have found (a, b) as a linear
combination of ry = @ and r; = b. Specifically, if we have found at a particular stage that

(a,b) =sr; + i,
then, since

Fi=rja—Fid;1
we have
(a,by=slr; 2 —r;1g;_p +1rj
={t —s5q;_rj_1+s5rj

This shows how to move up through the equations that are generated by the Euclidean
algorithm so that, at each step, the greatest commen divisor of a and b may be expressed
as a linear combination of ¢ and b.

This method for expressing (a, b) as a linear combination of a and b is some-
what inconvenient for calculation, because it is necessary to work out the steps of the
Euclidean algorithm, save all these steps, and then proceed backward through the steps
to write (@, b) as a linear combination of each successive pair of remainders, There
is another method for finding (a, #) which requires working through the steps of the
Euclidean algorithm only once. The following theorem gives this method, whichis called
the extended Euclidean algorithm.
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Theorem 3.14. Let a and b be positive integers. Then
(a.b) =s,a + 1,5,
where s, and ¢, are the nth terms of the sequences defined recursively by

.5‘0:1, fozo’
5120, tr_:l,

and
§;=8; 02— qjSj—1 =l a—qjalj1

for j=2,3,...,n, where the ¢ ; are the quotients in the divisions of the Euclidean
algorithm when it is used to find (a, b).

Proof. We will prove that
(3.2) ?'j =SJﬂ+tjb
for j =0,1,...,n.Since (@, b} =r,, once we have established (3.2), we will know that

{a,b) = s,a + 1,b.

We prove (3.2) using the second principle of mathematical induction. For j =0,
we have a =rg=1-a + 0 b = spa + tpb. Hence, (3.2) is valid for j =0. Likewise,
b=r=0-a+1-b=s5a+tb, sothat (3.2} is valid for j = L

Now, we assume that

ry=s;a+ib

for j=1,2,. ..,k — 1. Then, from the kth step of the Euclidean algorithm, we have
P =Tk = p—14k-1
Using the induction hypothesis, we find that
rp = (Sg_na -+ tp_ob) — (10 + 4 1P) Gy

= (8p-2 = Sp1@r—0a@ + (g2 — T_1ge—1)b
=s5.a+ fkb.
This finishes the proof. u
The following example illustrates the use of this algorithm for expressing (a, b) as

a linear combination of 2 and b.

Example 3.14. We summarize the steps used by the extended Euclidean algorithm to
express (252, 198) as a linear combination of 252 and 198 in the following table.
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1

3
1
2

>4
36
18

0

J

1 0
01
1-1
-3 4
4 -5

The values of s i and t;, J=0,1,2,3,4, are computed as follows:

Joorp T
-0 | 252 198
1 198 54
2 54 36
3 36 18
4
Sg = 1,
51=0,

H=5—-s5q=1-0.1=1,
§3=8;—8g; =0—-1-3=-3,

Sa=8 —sp3=1-(-3)-1=4,

fo'——O,
f=1,

t-z:fﬂ—flf‘h:{)—l'lz—‘i,
fy=f — gy =1—-(=13=4,

f4=tz—f3Q3ﬁ—1—4'1=—5.

Because ry = 18 = (252, 198) and ry = s4a + 14b, we have

18=1(252,198) =4 -252 — 5. 198.
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Note that the greatest common divisor of two integers may be expressed as a linear
combination of these integers in an infinite number of ways. To see this, let d = (g, b)
and let d == sa + £b be one way to write d as a linear combination of & and b, guaranteed
to exist by the previous discussion. Then for all integers k,

d=(s+k(b/d))a+ (¢ —k(a/d))b.

Example3.15, Witha =252 and b = 198, we have 18 = (252, 198) = (4 + 11k)252+

(—5 — 14k)198 for any integer k.

3.4 Exercises

>

1. Use the Euclidean algorithm to find each of the following greatest common divisors.

2. Use the Euclidean algorithin to find each of the following greatest common divisors.

a) (45, 75) c) (066, 1414)

b) (102, 222) d) (20785, 44350)
a) {51, 87) c) (981, 1234)

b) (105, 300) d) (34709, 100313)

3. Foreachpairofintegers inExercise 1, express the greatest common divisor of the integers
as a linear combination of these integers.

*

as a linear combination of these integers.

3. Find the greatest common divisor of each of the following sets of integers.

a6, 10,15 b} 70, 98, 105

¢) 280, 330, 405, 490

For each pair of integers in Exercise 2, express the greatest common divisor of the integers
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6. Find the greatest common divisor of each of the following sets of integers.
ay 15,35,90 b) 300, 2160, 5040 c) 1240, 6660, 15540, 19980

The greatest common divisor of the n integers ay, a,, . . . , a, can be expressed as a linear
combination of these integers. To do this, first express {a;, a;) as a linear combination of a;
and a,. Then express (ay, ag, a3) = ((a), ¢3), a) as a linear combination of a;, az, and a,.
Repeat this until (a;, 6y, . . . ,a,) is expressed as a linear combination of ay, @z, .« .« ., - Use
this procedure in Exercises 7 and 8.

7. Express the greatest common divisor of each set of numbers in Exercise 5 as a linear
combination of the numbers in that set.

8. Express the greatest common divisor of each set of numbers in Exercise 6 as a linear
combination of the numbers in that set.

The greatest common divisor of two positive integers can be found by an algorithm that uses
only subtractions, parity checks, and shifts of binary expansions, without using any divisions.
The algorithim proceeds recursively using the following reduction:

a ifa=bh,

2(a/2,b/2) i aandb areeven,

(a/2,b) if g is even and b is odd;

(a — b, b) if @ and b are odd, where a > b.

{a,b) =

(Note: Reverse the roles of a and b when necessary.) Exercises 9-13 refer to this algorithm.
9. Find (2106, 8318) using this algorithm,

10. Show that this algorithm atways produces the greatest common divisor of a pair of
positive integers.

* 11, How many steps does this algorithm use to find (a, b} if a = (2" — {—1y)/3 and
b= 2(271 — (= "1y /3, when # is a positive integer?

% 12. Show that to find (a, &) this algorithm uses the subtraction step in the reduction no more
than 1 + [log, max{a, b)] times.

% 13, Devise an algorithm for finding the greatest common divisor of two positive integers
using their balanced ternary expansions.

In Exercise 18 of Section 1.5, a modified division algorithm is given, which states that if @ and
b > 0 are integers, then there exist unique integers g, r, and e such that a = bg + er, where
e==1,r>0,and ~b/2 < er < b/2. We can set up an algorithm, analogous to the Euclidean
algorithm, based on this modified division algorithm, called the least-remainder algorithm.
It works as follows: Let ry = a and r, = b, where a > b > 0. Using the modified division
algorithm repeatedly, obtain the greatest common divisor of a and b as the last nonzero
remainder r,, in the sequence of divisions

?'0'—"7'](11"'32?'2, —}'1/2 < €9, 51'1/2

Py =Py 1Gu—1 1 €nFys —rn 12 <ery = rn—1/2
Fu—1="nqn-
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14. Use the least-remainder algorithm to find (384, 226),

15. Show that the least-remainder algorithm always produces the greatest common divisor
of two integers.

## 16. Show that the least-remainder algorithm is always at least as fast as the Euclidean
algorithm. (Hint: First show that if @ and b are positive integers with 2b < g, then
the least-remainder algorithm can find (a, &) with no more steps than it uses to find
(a,a — b))

*17

+

Find a sequence of integers vy, vy, vy, . . ., such that the least-remainder algorithm takes
exactly n divisions to find (v,.,, v,2).

* 18, Show that the number of divisions needed to find the greatest common divisor of two
positive integers using the least-remainder algorithm is less than 8/3 times the nurmber
of digits in the smaller of the two numbers, plus 4/3.

*19. Let m and n be positive integers and let a be an integer greater than 1. Show that
(@ —1,a" — ) =qalmm _ 1,

* 20. Show that if m and » are positive integers, then (f,,, f,) = Jonm-

The next two exercises deal with the game of Euclid. Two players begin with a pair of positive
integers and take turns making moves of the following type. A player can move from the pair
of positive integers {x, y} with x > y, to any of the pairs {x — ty, y}, where ¢ is a positive
integer and x — ty > 0. A winning move consists of moving to a pair with one element equal
to 0, :

21. Show that every sequence of moves starting with the pair {a, b} must eventually end with
the pair {0, (a, &)}.

*22. Show that in a game beginning with the pair {a, b}, the first player may play a winning
strategy if @ = b orif @ > b(1 + +/5)/2; otherwise, the second player may play a winning
strategy. (Hint: First show thatif y < x < y(1 4+ +/5)/2, then there is a unique move from
{x, y} that goes to a pair {z, ¥} with y > z{1 4 +/3)/2.)

* 23, Show that the number of bit operations needed to use the Euclidean algorithm to find
the greatest common divisor of two positive integers @ and b with a > b is O((log, @)?).

(Hinz: First show that the complexity of division of the positive integer g by the positive
integer d is O(log d log g}.)

# 24, Leta and b be positive integers and let riand gy, j=1,2,...,nbe the remainders and
quotients of the steps of the Euclidean algorithm as defined in this section.

2) Find the value of 3°7_, r;q;.
b) Find the value of 3~}_, r3g;.

25, Suppose that a and b are positive integers with @ > b. Let g; and r; be the quotients and
remainders in the steps of the Euclidean algorithm fori = 1,2, . ., n, where r,, is the last

nonzero remainder. Let Q; = | 9 L and @ =J]°, 0, Showthat[ ¢ }=0( "7 }.
! 10 i=0 i b 0
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3.4 Computational and Programming Exercises

Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1.

Find (9876543210, 123456789), (11111111111, 1000000001) and (45666020043321,
73433510078091009).

2. Verify Lamé’s theorem for several different pairs of large positive integers of your choice.

3. Compare the number of steps required to find the greatest common divisor of differ-

ent pairs of large positive integers of your choice using the Euclidean algorithm, the
algorithm described in the preamble to Exercise 9, and the least-remainder algorithm
described in the preamble to Exercise 14.

. Estimate the proportion of pairs of positive integers (a, b) that are relatively prime,

where @ and b are positive integers not exceeding 1000, not exceeding 10,000, not
exceeding 100,000, and not exceeding 1,000,000. To do so, you may want to test a
random selection of a small number of such pairs (see Section 10.1 for material on
pseudorandom nurmbers). Can you make any conjectures from this evidence?

Programming Projects

Write programs using Maple, Mathematica, or a language of your choice to do the
following,.

1.
2,

Find the greatest common divisor of two integers using the Euclidean algorithm.

Find the greatest common divisor of two integers using the modified Euclidean algorithm
given in the preamble to Exercise 14.

. Find the greatest common divisor of two integers using no divisions (see the preamble

to Exercise 9).

. Find the greatest common divisor of a set of more than two integers.

. Express the greatest common divisor of two integers as a linear combination of these

integers.

. Express the greatest common divisor of a set of more than two integers as a linear

combination of these integers.

. Play the game of Euclid described in the preamble to Exercise 21.

3.5 The Fundamental Theorem of Arithmetic

The fundamental theorem of arithmetic is an important result that shows that the primes
are the multiplicative building blocks of the integers.

Theorem 3.15. The Fundamental Theorem of Arithmetic. Every positive integer
greater than 1 can be written uniquely as a product of primes, with the prime factors
in the product written in nondecreasing order.
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Sometimes, the fundamental theorem of arithmetic is extended to apply to the inte-
ger 1. That is, 1 is considered to be written uniquely as the empty product of primes.

Example 3.16. The factorizations of some positive integers are given by

240=2.2-2-2-3-5=2%.3.5, 2890=17-17=172, 1001=7-11-13. <«

Note that it is convenient to combine all the factors of a particular prime into a power
of this prime, such as in the previous example: For the factorization of 240, ail the factors
of 2 were combined to form 2%, Factorizations of integers in which the factors of primes
are combined to form powers are called prime-power factorizations.

To prove the fundamental theorem of arithmetic, we need the following lemma
concerning divisibility. This lemma turns out to be a crucial part of the proof.

Lemma 3.4, If a, b, and ¢ are positive integers such that (a, ») = [ and « | bc, then
alc.

Proof.  Since (a, b) = 1, there are integers x and y such that ax + by = 1. Multiplying
both sides of this equation by ¢, we have acx + bey = ¢. By Theorem 1.9, a divides
acx + bey, because this is a linear combination of & and k¢, both of which are divisible
by a. Hence, a | c. "]

The following consequence of this lemma will be needed in the proof of the funda-
mental theorem of arithmetic.

Lemma3.5. If pdividesa;a, - - - a,, where p isaprime and ay, a,, . . . , @, are positive
integers, then there is an integer / with 1 </ < n such that p divides a;.

Proof. 'We prove this result by induction. The case where n = 11s trivial. Assume that
the result is true for n. Consider a product of n + 1 integers aa; - - - @, thatis divisible
by the prime p. We know that either (p, aya; - - a,)=10r (p, @8, - - @) = p. If
{p,a1a; + - - a,) = 1, then by Lemma 3.4, pla, ;. On the other hand, if plaja, - - - a,,
using the induction hypothesis, there is an integer i with 1 <i <n such that p|a;.
Consequently, pla; for some i with 1 < < n + 1. This proves the result. [ ]

We now begin the proof of the fundamental theorem of arithmetic. First, we wilt
show that every positive integer greater than I can be written as the product of primes in
at least one way. Then we will show that this product is unique up to the order of primes
that appear. '

Proof. 'We use proof by contradiction. Assume that some positive integer cannot be
written as the product of primes. Let 7 be the smallest such integer (such an integer must
exist, from the well-ordering property). If n is prime, it is obviously the product of a set
of primes, namely the one prime n. So #n must be composite. Letn =ab, with1 <a <n
and 1 < & < 7. But since @ and b are smaller than n, they must be the product of primes.
Then, since n = ab, we conclude that » is also a product of primes. This contradiction
shows that every positive integer can be written as the product of primes.
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We now finish the proof of the fundamental theorem of arithmetic by showing that
the factorization is unique. Suppose that there is an integer n that has two different
factorizations into primes:

R=p1 P2 "Ps=q142" "

where pp, Py - - - » Ps» 404 G1. G2, - - -, g are all primes, with py = pp =+ = s and
== =4

Remove all common primes from the two factorizations to obtain
PPy P, = 4590
where the primes on the left-hand side of this equation differ from those on the right-
hand side, # > 1, and v > 1 (because the two original factorizations were presumed to
differ). However, this leads to a contradiction of Lemma 3.5; by this lemma, p; must

divide g for some k, which is impossible, since each q;, is rime and is different from
q};‘. p q Ik p
pi,- Hence, the prime factorization of a positive integer n is unique. "

Where Unique Factorization Fails The fact that every positive integer has a unique
factorization into primes is a special property of the set of integers that is shared by some,
but not all, systems of numbers. In Chapter 13, we will study the diophantine equation
x" 4 y" = z", In the nineteenth century, mathematicians thought they could prove that
this equation has no solutions in nonzero integers when n is an integer withn >3 (a
result known as Fermat’s last theorem), using a form of unique factorization for certain
types of algebraic numbers. It turned out that these numbers do not enjoy the property
of unique factorization. The supposed proofs were incorrect, a problem that escaped the
notice of many eminent mathematicians.

Although we do not want to go too far afield (by introducing algebraic number
theory, for instance), we can provide an example showing that unique factorization fails
for certain types of numbers. Consider the set of numbers of the form a + b+/—3, where
a and b are integers. This set contains every integer (faking b =0), as well as other
numbers such as 3v/—3, —1 + 4+/—=3, 7 — 5+/—5, and so on. A number of this form is
prime (in this context) if it cannot be written as the product of twe other numbers of
this form both different than 1. Note that 6 =2 - 3= (1 -+ v=5)(1 -~ +/=5). Each of
the numbers 2,3, 1+ +/—3, and 1 — /=5 is a prime (see Exercises 19-22 at the end of
this section to see how this can be established). Tt follows that the set of numbers of the
form a + b+/—5 does not enjoy the property of unique factorization into primes. On the
other hand, numbers of the form a -+ b+/—1, where a and b are integers, do have unique
factorization, as we will show in Chapter 14.

Using Prime Factorizations

The prime-power factorization of a positive integer n encodes essential information about
1. Given this factorization, we can immediately deduce whether a prime p divides » since
p divides r if and only if it appears in this factorization. {We can obtain a contradiction
of the uniqueness of the prime-power factorization of » if a prime g divided #, but did
not appear in the prime-power factorization of #. The reader should fill in the other parts
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of the proof.) For instance, since 168 == 23 .3 . 7, each of the primes 2, 3, and 7 divides
120, but none of the primes 5, 11, and 13 do. Furthermore, the highest power of a prime
p that divides » is the power of this prime in the prime-power factorization of n. For
instance, each of 23, 3, and 7 divides 168, but none of 24, 32, and 72 do. Moreover, an
integer d divides n if and only if all the primes in the prime-power factorization of d
appear in the prime-power factorization of n to powers at least as large as they do in the
prime-power factorization of d. (The reader should also verify that this follows from the
fundamental theorem of arithmetic.) The following example illustrates how we can find
all the positive divisors of a positive integer using this observation.

Example3.17. The positive divisors of 120 = 23. 3. 5 are those positive integers with
prime-poywer factorizations containing only the primes 2, 3, and 5, to powers less than or
equal to 3, 1, and 1, respectively. These divisors are

1 3 5 3.5=15
2 2.3=6 2.5=10 2.3.5=30
22=4 22.3=12 22.5=20 22.3.5=60

23=38 22.3=24 23.5=40 23.3.5=120. «

Another way in which we can use prime factorizations is to find greatest common
divisors, as illustrated in the following example.

Example 3.18, To be a common divisor of 720 =2%.3%.5and 2100 =22 .3.52.7,a
positive integer can contain only the primes 2, 3, and 5 in its prime-power factorization,
and the power to which one of these primes appears cannot be larger than either of
the powers of that prime in the factorizations of 720 and 2100. Consequently, to be a
common divisor of 720 and 2100, a positive integer can contain only the primes 2, 3,
and 5 to powers no larger than 2, 1, and 1, respectively. Therefore, the greatest commoin
divisor of 720 and 2100 is 22 3. 5 = 60, <

To describe, in general, how prime factorizations can be used to find greatest
common divisors, et min(a, b) denote the smaller, or minimem, of the two numbers
a and b. Now, let the prime factorizations of @ and b be

a2

a;_ay by b b
Aa=pprpy P b=pipy oo,

where each exponent is a nonnegative integer, and where all primes occurring in the prime
factorizations of @ and of b are included in both products, perhaps with 0 exponents. We
note that

min{a,.b,)

Py

because for each prime p;, a and b share exactly min(a;, b;) factors of D;-

((1, b) _ piniﬂ(ﬂ[sbl)péniﬂ(az,bz) o

Prime factorizations can also be used to find the smallest integer that is a multiple of
each of two positive integers. The problem of finding this integer arises when fractions
are added.
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Definition. The least common multiple of two nonzero integers a and b is the smallest
positive integer that is divisible by a and b.

The least common multiple of a and b is denoted by [a, b]. (Note: The notation
lem(z, b} is also commonly used to denote the least common multiple of @ and 5.}

Example 3.19. We have the following least common multiples: [15, 217 = 105,
[24, 361 = 72,[2,20] =20, and [7, 11} =T77. R

Once the prime factorizations of a and b are known, it is easy to find [a, b].
Ha= pT*pgz oo py' and b = p?‘pgz e pﬁ", where py, Py, . - . » Py are the primes
occurring in the prime-power factorizations of a and b (where we might have a; =0
or b; = 0 for some /), then for an integer to be divisible by both a and b, it is necessary
that in the factorization of the integer, each p; occurs with a power at least as large as

a; and b;. Hence, {a, b], the smallest positive integer divisible by both a and b, is

max(a).by) _max{az,bz} max(d,.b,)

[a,b]=p Py A

where max(x, y) denotes the larger, or maximun, of x and y.

Finding the prime factorization of large integers is time-consuming. Therefore, we
would prefer a method for finding the least common multiple of two integers without
using the prime factorizations of these integers. We will show that we can find the least
common multiple of two positive integers once we know the greatest common divisor
of these integers. The latter can be found via the Euclidean algorithm. First, we prove
the following lemma.

Lemma 3.6, If x and y are real numbers, then max(x, y) + min{x, y) =x -+ y.

Proof. Ifx>y,thenmin(x,y) =y and max(x, y} =x, 50 that max(x, y) + min{x,y) =
x+y. If x <y, then min(x, y) =x and max(x, y) =y, and again we find that
max{x, y} + min(x, y) =x + y. ]

We use the following theorem to find [a, b] once (a, b) is knowi.

Theorem 3.16. If @ and b are positive integers, then [a, bl = ab/(a, b), where [a, b]
and (a, b) are the least common multiple and greatest common divisor of a and b,
respectively.

Proof Let a and b have prime-power factorizations a = p‘flpgz oo py and b=
by _b b o . o
P2t p? - pu", where the exponents are nonnegative integers and all primes occurrng in

either factorization occur in both, perhaps with 0 exponents, Now let M i= max(a s b J,-)
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and m ; = min{a; ;> b;). Then, we have

1\!1 Mz my 1112 1
[a b(a, b) = pn J"pl P p::
M 1-5-m 1, Myt+niy M
=Py Py TPy v

a1+by ﬂz+bz a.-1b
=hn 1) R

b
—pllpgz.--pgﬂpll...pf:ﬂ
=abh,
since M; +m; j = max{a;, J)+mm(af, b;)=a; + b; by Lemma 3.6. B

The following consequence of the fundamental theorem of arithmetic will be needed
later.

Lemma 3.7, Letm and n be relatively prime positive integers. Then, if 4 is a positive
divisor of mn, there is a unique pair of positive divisors d; of m and &, of » such that
d = dyd. Conversely, if d; and d, are positive divisors of m and n, respectively, then
d = dyd, is a positive divisor of mn.

Proof. Let the prime-power factorizations of m and n be m = p{''py? - - - pi™ and
n . .
n=gq'gy*---q;".Since (m,n) = 1, the set of primes py, py, . . . p, and the set of primes
4p 42, - - - » §; have no common elements. Therefore, the prime-power factorization of
mn is
i = PTI 52 P:l’qnlqnz e qn‘

Hence, if d is a positive divisor of mn, then

d=piipy-- piqliglt .- gl
where0<e <m;fori=12,...,5 and()sfjsnj for j=1,2,...,t. Now, let

= (d,m) and d; = (d, n), so that

dy=p{ip2---p& and dy=g{igl . o]
Clearly, d =d;dy and {d}, d;) = 1. This is the decomposition of d that we desire.
Furthermore, this decomposition is unique. To see this, note that every prime power in
the factorization of ¢ must occur in either dy or dy, that prime powers in the factorization
of d that are powers of primes dividing m must appear in dj, and that prime powers in
the factorization of d that are powers of primes dividing n must appear in d,. It follows
that oy must be {d, m) and d, must be (d, n).

Conversely, let &) and 4, be positive divisors of m and », respectively. Then

pllp? e_T
where 0 < ¢; <m; fori =1,2,...,s, and
dy=gi'af - qf",
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where 0 < f; <n; for j=1,2,...,t. The integer

d=didy=ppZ - pighglt . gl

is clearly a divisor of

ny_my

mn=pl'ph ny "

H
A
because the power of each prime occurring in the prime-power factorization of d is less
than or equal to the power of that prime in the prime-power factorization of mn. n

A Proof of a Special Case of Dirichlet’s Theorem Unique factorization can be used to
prove special cases of Dirichlet’s theorem, which states that the arithmetic progression
an + b contains infinitely many primes whenever a and b are relatively prime positive
integers. We will illustrate this with a proof of Dirichlet’s theorem for the progression
4n + 3.

Theorem 3.17. There are infinitely many primes of the form 4n + 3, where n is a
positive integer.

Before we prove this result, we prove a useful lemma.
Lemma 3.8. If ¢ and b are integers, both of the form 4n + 1, then the product ab is

also of this form.

Proof. Since a and b are both of the form 4n -+ 1, there exist integers r and 5 such that
a=4r + land b = 4s + 1. Hence,

ab=(Ar+Ds + D =16rs +4r +4s + 1=4drs +r +5) + L,
which is again of the form 4n + 1. =
We now prove the desired result,

Proof. Let us assume that there are only a finite number of primes of the form 41 + 3,
Say P0:3?pll Pz,- .. ,p,-. Let

Q=4dppr---prt3

Then, there is at least one prime in the factorization of O of the form 45 + 3. Otherwise,
all of these primes would be of the form 4z + 1, and by Lemma 3.8, this would imply
that  would also be of this form, which is a contradiction. However, none of the
primes pg, Pp» . - - » Pp divides Q. The prime 3 does not divide @, for if 3| O, then
3[(Q —3)=4p;p, - p,, which is a contradiction. Likewise, none of the primes p;
can divide 0, because p; | Q implies p; | (G —4pp2 - - p,) =3, which is absurd.
Hence, there are infinitely many primes of the form 4n + 3. =

Results About Irrafional Numbers We conclude this section by proving some re-
sults about irrational numbers. If o is a rational number, then we may write & as the
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quotient of two integers in infinitely many ways, for if & = a/b, where a and & are in-
tegers with b 3£ 0, then « = ka/kb whenever k is a nonzero integer, It is easy to see
that a positive rational number may be written uniquely as the quotient of two rela-
tively prime positive integers; when this is done we say that the rational number is
in lowest terms. We note that the rational number 11/21 is in lowest terms. We also
see that

cee=—33/—63=—22/—42 = 11/—21 = 11/21 = 22/42 = 33/63 = - - - ,

The next two results show that certain numbers are irrational. We start by giving
another proof that +/2 is irrational (we proved this originally in Section 1.1).

Example 3.20. Suppose that +/2 is rational. Then +/2 =a /b, where g and b are
relatively prime integers with b 3 0. It follows that 2 = a2/b2, so that 2% = 2. Since
2 [ a?, it follows (see Exercise 40 at the end of this section) that 2 | a. Let a == 2, so that
b? =2¢% Hence, 2 | b2, and by Exercise 40, 2 also divides b. However, since (g, b) = 1,
we know that 2 cannot divide both @ and b. This contradiction shows that +/2 is irrational,

<

We can also use the following more general result to show that +/2 is irrational.

Theorem 3,18, Let « be a root of the polynomial x* + Ca XL e+ g,
where the coefficients ¢y, ¢),..., ¢, ; are integers. Then & is either an integer or an
irrational number,

Proof. Suppose that « is rational. Then we can write o = a/b, where a and b are
relatively prime integers with b # 0. Because o is aroot of x” + PN Ll SRR
cg, we have

(@/BY" + cpy(a/bY" b - 4 eyla/b) + g = 0.
Multiplying by ", we find that
a" ey 1@ o+ b b = 0.
Since
a"=b(—c, 1@~ cab" T — b Y,

we see that b [ a". Assume that b 7 1. Then, b has a prime divisor p. Since plband
b | a”, we know that p | o”. Hence, by Exercise 41, we see that p | a. However, since
{a,b) = 1, this is a contradiction, which shows that b = =+1. Consequently, if ¢ is rational
then & = =aq, so that & must be an integer. n

We illustrate the use of Theorem 3.18 with the following example.
Example 3.21. Let a be a positive integer that is not the mth power of an integer, so

that 7/a is not an integer. Then %/d is irrational by Theorem 3.18, since fa is a root of
x™ — a. Consequently, such numbers as /2, &5, V17, etc., are irrational. «
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The fundamental theorem of arithmetic can be used to prove the following resuit,
which relates the famous Riemann zeta function to the prime numbers.

Theorem 3.19. If s is a real number with 5 > 1, then

21 1\
t0=Y =[] (1_?) .

n=1 p prime

Not surprisingly, we will not prove Theorem 3.19 because its proof depends on results
from analysis. We note here that the proof uses the fundamental theorem of arithmetic
to show that the term 1/n°, where n is a positive integer, appears exactly once when the
terms of the product on the right-hand side are expanded. To see this, we use the fact that

t 21
1— pfs = Z ks
and then we multiply these sums together, obtaining the term

1

5 3
Py Py e pr

when the denominator is the prime-power factorization of n exactly once. The details of
the proof can be found in (HaWr79].

3.5 Exercises

1. Find the prime factorizations of each of the following integers.

a) 36 €)222 i) 5040
b) 39 £) 256 i) 8000
¢) 100 g) 515 k) 9555
d) 289 h) 989 1) 9999

2. Find the prime factorization of 111,111.

3. Find the prime factorization of 4,849,845,

4. Find all of the prime factors of each of the following integers.
100,000  5)10,500,000 <) 10! (%)

5, Find ail of the prime factors of each of the following integers.
2) 196,608 6)7,200000  c) 20! o (32)

6. Show that all of the powers in the prime-power factorization of an integer » are even if
and only if » is a perfect square,

7. Which positive integers have exactly three positive divisors? Which have exactly four
positive divisors?
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Show that every positive integer can be written as the product of possibly a square and a
square-free integer. A square-free integer is an integer that is not divisible by any perfect
squares other than 1.

- An integer 1 is called powerful if, whenever a prime p divides n, p? divides n. Show that

every powerful number can be written as the product of a perfect square and a perfect
cube.

Show that if & and b are positive integers and a® | b2, then a | b.

Let p be a prime and » a positive integer. If p® | n, but p?+1 § n, we say that p exactly divides
n, and we write p? || n.

11.
12.
13,
14,

15,
16.

17.
18.

Show that if p? [| m and p® {| n, then pt¥ || mn.
Show that if p? || m, then p*® || m*.
Show that if p {| m and p® || n with a # b, then PN || o ),

Let n be a positive integer, Show that the power of the prime p occurring in the prime-
power factorization of nlis

fn/pl+ I/ P21+ /P31 + - .

Use Exercise 14 to find the prime-power factorization of 20!,

How many zeros are there at the end of 1000! in decimal notation? How many in base 8
notation?

Find all positive integers »n such that »! ends with exactly 74 zeros in decimal notation.

Show that if  is a positive integer, it is impossible for 1! to end with exactly 153, 154,
or 155 zeros when it is written in decimal notation.

Let o = a + b+/—5, where a and b are integers. Define the norm of ¢, denoted by N(w), as
Ny =a? -+ 552,

19,

20,

21,

22,

23.

* 24,

Show thatif ¢ =a + bv/—5and § = ¢ + d+/—5, where a, b, ¢, and d are integers, then
N{ap) = N{e)N(B).

A number of the forma + b+/—5 is prime if it cannot be written as the product of numbers
o and B, where neither o nor § equals +1. Show that the number 2 is a prime number
of the form a 4 b+/—5. (Hint: Start with N(2) = N(w8), and use Exercise 19.)

Use an argument similar to that in Exercise 20 to show that 3 is a prime number of the
form a + b+/—5.

Use arguments similar to that in Exercise 20 to show that both 14 /=3 are prime
numbers of the form a + b+/~-3.

Find two different factorizations of the number 21 into primes of the form a + b+/3,
where a and b are integers.

Show that the set of all numbers of the form a + b/—86, where a and b are integers, does
not enjoy the property of unique factorization.
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The next four exercises present another example of a system where unique factorization
into primes fails. Let H be the set of all positive integers of the form 4k + 1, where £ is
a nounegative integer.

25. Show that the product of two elements of H is also in H.

# 26, Anelement h # 1in H is called a Hilbert prime (named after famous German mathe-
matician David Hilbert) if the only way it can be writien as the product of two integers
inHish=Hh-1=1-h. Find the 20 smallest Hilbert primes.

27. Show that every element of H can be factored into Hilbert primes.

28. Show that factorization of elements of H into Hilbert primes is not necessarily unique,
by finding two different factorizations of 693 into Hilbert primes.

29, Which positive integers » are divisible by all integers not exceeding /n?

30, Find the least common multiple of each of the following pairs of integers.

a) 8, 12 d) 111, 303
b) 14, 15 €) 256, 5040
¢} 28, 35 £) 343, 999

31. Find the least common multiple of each of the following pairs of integers.

a)y7, 11 d) 101, 333
by 12, 18 e} 1331, 5005
¢) 25,30 ) 5040, 7700

32, Find the greatest common divisor and least common muitiple of the following pairs of
Integers.

a) 2. 35, 223%7°

b) 2-3-5-7,7-11.13

¢y 2836541113, 2.3.5. 1113

d) 4110147431031001’ 4111434783111

DAVID HILBERT (1862-1943), bomn in Knigsberg, the city famous in math-
ematics for its seven bridges, was the son of a judge. During his tenure at
Géttingen University, from 1892 to 1930, Hilbert made many fundamental con-
tributions to a wide range of mathematical subjects. He almost always worked on
one arca of mathematics at a time, making important contributions, then mov-
ing to a new mathematical subject. Some areas in which Hilbert worked are
the caleulus of variations, geometry, algebra, number theory, logic, and mathe-
matical physics, Besides his many outstanding original contributions, Hilbert is
remembered for his famous list of 23 difficuli problems. He described these problems at the 500 In-
ternational Congress of Mathematicians, as a challenge to mathematicians at the birth of the twentieth
century. Since that time, they have spurred a tremendous amount and variety of research. Although
many of these problems have now been solved, several remain open, including the Riemann hypoth-
esis, which is part of Problem 8 on Hilbert’s list. Hilbert was also the author of several important
textbooks in number theory and geometry..
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Find the greatest common divisor and least common multiple of the following pairs of
integers.

a) 22335577 27335372

by 2.-3.5.7-.11-13, 17-19.23.29
¢y 23571113 2.3.5.7.11.13

d) 4711791111011001, 411183}“1011000

Show that every common multiple of the positive integers a and b is divisible by the
least common multiple of & and b.

Periodical cicadas are insects with very long larval periods and brief adult lives. For each
species of periodical cicada with a larval period of 17 years, there is a similar species
with a larval period of 13 years. If both the 17-year and 13-year species emerged in a
particular location in 1900, when will they next both emerge in that location?

Which pairs of integers @ and b have greatest common divisor 18 and least common
multiple 5407 ’

Show that if a and b are positive integers, then (a, b} | [a, b]. When does (a, b) = [a, b]?

Show that if @ and b are positive integers, then there are divisors ¢ of @ and d of b with
{c,d)=1and cd ={qa, b].

Show that if a, b, and ¢ are integers, then [a,b] | c if and only if @ | ¢ and b | c.
Use Lemma 3.4 to show that if p is a prime and « is an integer with p | a2, then rla.

Show that if p is a prime, a is an integer, and n is a positive integer such that p|a®, then
pla.

Show that if a, &, and ¢ are integers with ¢ | ab, then ¢ | (@, €)(b, c).

a} Show that if a and b are positive integers with (g, b) = 1, then (o, ") = 1 for all
positive integers n.

b) Use part (a) to prove that if a and b are integers such that @” | 5”, where n is a positive
integer, then a | b.

Show that +/5 is irrational:
a) by an argument similar to that given in Example 3.20;
b) using Theorem 3.18,

Show that +/2 + +/3 is irrational.
Show that fog, 3 is irrational.

Show that log,, b is irrational, where p is a prime and b is a positive integer that is not
the second or higher power of p.

Letn be a positive integer greater than 1. Show that 1 + 5 + § + -+ - + L is not an integer.
Show that if o and b are positive integers, then (a, b} =(a + b, [a, b]).

Find the two positive integers with sum 798 and least common multiple 10,780, (Hinz:
Use Exercise 49.)

Show that if a, b, and ¢ are positive integers, then ([a, b1, ) = [(a, ¢), (b, ¢)] and
[{a, b}, c]=([a,c], [B, c]).
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The least common multiple of the integers a), ay, . .., a,, which are not all zero, is the
smallest positive integer that is divisible by all the integers ay, @a, . . . , a,; it is denoted by
lap, az, .. a,l ‘
52. Find [6, 10, 15] and [7, 11, 13].

53. Show that [a), aa, . . ., dy 1, @) =1layn a2, ..., a4, ) a,l

54, Letn be a positive integer. How many pairs of positive integers satisfy [a, b] = n? (Hinr:

55.

56.

57.
58.
59,

60.

62,

63.

64.

65.

60,
67,

Consider the prime factorization of n.)
a) Show that if @, b, and ¢ are positive integers, then

max{a, b,c) =a -+ b+ ¢ — min(a, by — min(a, ¢) - minfb, ¢) + min(a, b, c).

b) Use part (a) to show that
abcla, b, ¢)

[a,b,¢]= ———— 22—
(a, B){a, c)(b, c)

Generalize Exercise 55 to find a formula relating (a,, a5, . .., a,) and [ay, a3, .. ., a,],
where a|, a,, . . ., g, are positive integers.

Show that if @, b, and c are positive integers, then (a, b, c)ab, ac, bcl =abe.
Show that if a, b, and ¢ are positive integers, then [a, b, c1(ab, ac, be) = abe.

Show that if a, b, and ¢ are positive integers, then ([a, b}, [a, cl [b,c]) =

ia, b}, {a, ), (b, )]

Prove that there are infinitely many primes of the form 6k + 5, where k is a positive
integer.

. Show that if @ and b are positive integers, then the arithmetic progression a, a + b,

@ -+ 2b, . .., contains an arbitrary number of consecutive composite terms.

Find the prime factorizations of each of the following integers.

a)y 108 — 1 dy2*# -1
b) 108 —1 e)2¥0 — 1
2 -1 £y23% — |

A discount store sells a camera at a price less than its usual retail price of $99 but more
than $1. If they sell $8137 worth of this camera and the discounted dollar price is an
integer, how many cameras did they sell?

A publishing company sells $375,961 worth of a particular book, How many copies of
the book did they sell if their price is an exact dollar amount which is more than 317

If a store sells $139,499 worth of electronic organizers at a sale price which is an exact
dotlar amount less than $300 and more than $1, how many electronic organizers did they
sell?

Show that if @ and b are positive integers, then a? | b? implies that a | b,

Show that if a, b, and ¢ are positive integers with (a, ) = 1 and ab = ", then there are
positive integers d and e such that e = d” and b = ¢".

. Show thatif @y, aq, . . . , a,, are pairwise relatively prime integers, then [a), a5,. . ., q,] =

Qg ~ -0y,
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Show that among any set of 2 - 1 positive integers not exceeding 2, there is an integer
that divides a different integer in the set,

Show that (m + n)/mInlis an integer whenever m and # are positive integers,
Find all solutions of the equation m" = n™, where m and n are integers,

Let py, ps, . .., p, be the first » primes and Iet 1 be an integer with 1 < m < n.let O
be the product of a set of m primes in the list and let R be the product of the remaining
primes. Show that Q + R is not divisible by any primes in the list, and hence must have
a prime factor not in the list. Conclude that there are infinitely many primes.

This exercise presents another proof that there are infinitely many primes. Assume that
there are exactly r primes p,, Pro.o prlet Q= (]_{;.:[ pj) lopfork=1,2,...,r.

Let$=3"" O, Show that § must have a prime factor not among the r primes listed,
j=1*J p!

Conclude that there are infinitely many primes, (This proof was published by . Métrod
in 1917.)

Show that if p is primeand 1 <}k < P, then the binomial coefficient (ﬁ) is divisible by p.

Prove that in the prime factorization of n!, where 1 is an integer with n > 1, there is at
least one prime factor with I as its exponent. (Hint: Use Bertrand’s postulate.)

Exercises 76 and 77 outline two additional proofs that there are infinitely many primes,

76.

* 77,

Suppose that py,. .., p ; are the first j primes, lsted in increasing order. Denote by N(x)
the number of integers n not exceeding the integer x that are not divisible by any prime
exceeding p;.

a) Show that every integer n not divisible by any prime exceeding p ;7 can be written in
the form n = 25, where s is square-free,

b) Show there are only 2/ possible values of s in part (a) by looking at the prime
factorization of such an integer n, which is a product of terms p;k, where 0 <t < j
and e, isOor 1.

c) Show thatifn < x, thenr < V1 < X, where r is in part (a). Conclude that there are
1o more than ./ different values possible for r. Conclude that N(x) <2//%,

d) Show that if the number of primes is finite and p ; 18 the latgest prime, then N (x) == x
for all integers x.

e} Show from parts (c) and (d) that x < 24 /%, s0 that x < 2%/ for all x, leading to a
contradiction, Conclude that there must be infinitely many primes.

This exercise develops a proof that there are infinitely many primes based on the fun-
damental theorem of arithmetic published by A. Auric in 1915. Assume that there are
exactly r primes, py; < py < -+ . < Dr-Suppose thatn isa positive integerundlet 0 = P

) Show thatan integer m with 1 < m < O canbe written uniquely as m = pfl p?- - pr,
where ¢; > Ofori =1,2,...,r Furthermore, show that for the integer 1 with this
factorization, pf' <m < Q@ = L.

b) Let € = (log p.)/(og p)). Show that € =nCfori=1,2,.. . rand that O does
not exceed the number of r-tuples (e, €2:- .., €.) of exponents in the prime-power
factorizations of integers m with 1 =m=gQ.
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¢) Conclude from part (b) that @ = p? < (Cn 4 1) =n"(C+ nr.
d) Show that the inequality in part (c) cannot hold for sufficiently large values of n.
Conclude that there must be infinitely many primes.

Suppose that n is a positive integer. We define the Smarandache function S {n) by specifying
that S(r) is the least positive integer for which n divides S(n)!1. For example, S {8) = 4 since
8 does not divide 11== 1, 21= 2, and 3! = 6, but it does divide 41 = 24.

78. Find S(n) for all positive integers n not exceeding 12.
79, Find S(n) for n = 40, 41, and 43.
80. Show that S{p) = p whenever p is prime.

Let a{n) be the least inverse of the Smarandache function, that s, the least positive integer
for m for which S{m) = n. In other words, a(n) is the position of the first occurrence of the
integer n in the sequence §{1), §(2),...,S(),....

81, Find a(x) for all positive integers r not exceeding 11.
* 82, Find a(12).
83. Show that a(p) = p whenever p is prime.

Let rad(r) be the product of the primes that occur in the prime-power factorization of n, For
example, rad(360) = rad(2>-3%2.5)=2-3-5=¢60.

84. Find rad(n) for each of these values of n.

a) 300 c) 44004
b) 44 d) 128128

85. Show that rad(n} = n when » is a positive integer if and only if 1 is square-free.
86. What is the value of rad(n!) when = is a positive integer?

87. Show that rad(nm) < rad(mirad(m) for all positive integers m and #. For which positive
integers m and n does equality hold?

The next six exercises establish some estimates for the size of i (x), the number of primes

less than or equal to x. These results were originally proved in the nineteenth century by

Chebyshev.

88. Let p be a prime and let n be a positive integer. Show that p divides (2;) exactly
(12n/p) — 2[n/pD) + 21/ p"} = 2/ p*D + - - - + 20/ p'1 — 20/ p'D

times, where ¢ = [log, 2n]. Conclude that if p™ divides (2;’), then p™ < 2n.

(2") < (2n)"@,

n

89, Use Exercise 88 to show that

90, Show that the product of all primes between n and 2n is between (2'"’) and

n™ 2= (Hing: Use the fact that every prime between n and 2n divides (2n)! but
not (nH2.)
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91. Use Exercises 89 and 90 to show that
’ 7(2n) ~ w{n) < n log 4/ log n.
* 92. Use Exercise 91 to show that
T(2n) = (x(2n) — w(n)) + (r{n) — an/2)) + (w(n/2) — w(n/4)
t - =nlog64/flogn.
* 93, Use Exercises 89 and 92 to show that there are positive constants ¢ and ¢; such that
ox/logx < m(x) < esx/ logx

for all x > 2. (Compare this to the strong statement given in the prime number theorem,
stated as Theorem 3.4 in Section 3.2)

3.5 Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Find the prime factorizations of 8,616,460,799; 1,234,567,890; HE111,118,141: and
43,854,532,213,873.

2. Compare the nurnber of primes of the form 4n 4 1 and the number of primes of the form
4n ++ 3 for a range of values of 1. Can you make any conjectures about the relationship
between these numbers?

3. Find the smallest prime of the form an + b, given integers a and b, fora range of values
of a and &. Can you make any conjectures about such primes?

Programming Projects

Write programs using Maple, Mathematica, or a language of your choice to do the following,
- Find all of the positive divisors of a positive integer from its prime factorization,

+ Find the greatest common divisor of two positive integers from their prime factorizations,

. Find the least common multiple of two positive integers from their prime factorizations.

W RN e

» Find the number of zeros at the end of the decimal expansion of 1!, where i is a positive
integer.

5. Find the prime factorization of I, where n is a positive integer.,

3.6 Factorization Methods and the Fermat Numbers

By the fundamental theorem of arithmetic, we know that every positive integer can
be written uniquely as the product of primes, In this section, we discuss the problent
of determining this factorization, and we introduce several simple factoring methods.
Factoring integers is an extremely active area of mathematical tesearch, especially
because it is important in cryptography, as we will see in Chapter 8. In that chapter,
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we will learn that the security of the RSA public-key cryptosystem is based on the
observation that factoring integers is much, much harder than finding large primes.

Before we discuss the current status of factoring algorithms, we will consider the
most direct way to factor integers, called trial division. We will explain why it is not
very efficient. Recall from Theorem 3.2 that » either is prime, or has a prime factor not
exceeding ./n. Consequently, when we divide n successively by the primes 2,3,5,...,
not exceeding /n, either we find a prime factor p; of r or we conclude that » is prime.
Tf we have located a prime factor p) of n, we next look for a prime factor of ny =n/py,
beginning our search with the prime p,, as n{ has no prime factor less than py, and any
factor of n; is also a factor of n. We continue, if necessary, determining whether any of the
primes not exceeding /7 divide r1). We continue in this manner, proceeding iteratively,
to find the prime factorization of n.

Example 3.22. Let n = 42,833, We note that # is not divisible by 2, 3, or 5, but that
7| n. We have

42,833 =7.6119.

Trial divisions show that 6119 is not divisible by any of the primes 7, 11, 13,17, 19, or
23. However, we see that

6119=29.211.

Since 29 > +/211, we know that 211 is prime. We conclude that the prime factorization
of 42,833 15 42,833 =7-29 - 211. <

Unfortanately, this method for finding the prime factorization of an integer is
quite inefficient. To factor an integer N, it may be necessary to perform as many as
7 (+/N) divisions (assuming that we already have a list of the primes not exceeding
~/N), altogether requiring on the order of /N log N bit operations because, from the
prime number theorem, 7(+/N) is approximately +/N/log VN =2+/N/log N, and
from Theorem 2.7, these divisions take O(log2 N) bit operations each,

Modern Factorization Methods

Mathematicians have long been fascinated with the problem of factoring integers. In
the seventeenth century, Pierre de Fermar invented a factorization method based on the
idea of representing a composite integer as the difference of two squares. This method
is of theoretical and some practical importance, but is not very efficient in itself. We will
discuss Fermat’s factorization method later in this section.

Since 1970, many new factorization methods have been invented that make it pos-
sible, using powerful modern computers, to factor integers that had previously seemed
impervious. We will describe several of the simplest of these newer methods. However,
the most powerful factorization methods currently known are’ extremely complicated.
Their description is beyond the scope of this book, but we will discuss the size of the
integers that they can factor,
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Among recent factorization methods (developed in the past twenty-five years) are
several invented by J. M. Pollard, including the Pollard rho method (discussed in Section
4.6) and the Pollard 2 — I method (discussed in Section 6.1). These two methods are
generally too slow for difficult factoring problems, unless the numbers being factored
have special properties. In Section 12.5, we will introduce another method for factoring
that uses continued fractions, A variation of this method, introduced by Morrison and
Brilthart, was the major method used to factor large integers during the 1970s. This
atgorithm was the first factoring algorithm to run in subexponential time, which means
that the number of hit operations required to factor an integer n could be written in
the form n*") where (1) decreases as n increases. A useful notation for describing
the number of bit operations required to factor a number by an algorithm running in
subexponential time is L{a, b), which implies that the number of bit operations used by
the algorithm is O (exp(bilog n)*(log log n)l_“)). (The precise definition of L(a, b)is
somewhat more complicated.) The variation of the continued fraction algorithm invented
by Morrison and Brilthart uses L(1/2, \/3]2) bit operations. Tts greatest sticcess was the
factorization of a 63-digit number in 1970,

The quadratic sieve, described by Carl Pomerance in 1981, made it possible for
the first time to factor numbers having more than one hundred digits not of a special
form. This method, with many enhancements added after its original invention, uses
L(1/2, 1) bit operations, Its great success was in factoring a 129-digit integer known

@ as RSA-129, whose factorization was posed as a challenge by the inventors of the
RSA cryptosystem discussed in Chapter 8. Curzently, the best general-purpose factoring
algorithm for integers with more than 115 digits is the number field sieve, originally
suggested by Pollard and improved by Buhler, Lenstra, and Pomerance, which uses
L{1/3, (64/9)1/3) bit operations. Its greatest success has heen the factorization of a 160-
digit integer known as RSA-160 in early 2003. For factoring numbers with fewer than
115 digits, the quadratic sieve still seems to be quicker than the number field sieve.

An important feature of the number field and quadratic sieves (as well as other meth-
ods} is that these algorithms can be run in parallel on many computers (or processors) at
the same time. This makes it possible for large teams of people to work on factoring the

PIERRE DE FERMAT (1601-1665) was a lawyer by profession. He was
a noted jurist at the provincial parliament in the French city of Toulouse.
Fermat was probably the most famous amateur mathematician in history. He
published almost none of his mathemarical discoveries, but did correspond with
contemporary mathematicians about them. From his correspondents, especially
the French monk Mersenne (discussed in Chapter 6), the world Iearned about his
many contributions to mathematics. Fermat was one of the inventors of analytic
geometry. Furthermore, he laid the foundations of caleulus, Fermat, along with
Pascal, gave a mathematical basis to the concept of probability. Some of Fermat’s discoveries come to
us only because he made notes in the margins of his copy of the work of Diophantus. His son found his
copy with these notes, and published them so that other mathematicians would be aware of Fermat’s
results and claims.
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Number of Decimal Digits | Approximate MIPS-Years Required
150 10

225 108

300 10

450 1016

600 10%

Table 3.2 Coniputing power required to factor integers using the
number field sieve.

same integer. (See the historical note on factoring RSA-129 and other RSA challenge
numbers, at the end of this subsection.}

How big will the numbers be that can be factored in the future? The answer depends
on whether (or, more likely, how soon) more efficient algorithms are invented, as well
as how quickly computing power advances. A useful and commonly used measure
for estimating the amount of computing required to factor integers of a certain size is
millions of instructions per second—years, or MIPS—years. (One MIPS —year represents
the computing power of the classical DEC VAX 11/780 during one year. It is still
used as a reference point even though this computer is obsolete. Pentium PCs operate
at hundreds of MIPS.) Table 3.2 (adapted from information in [Od95]) displays the
computing power (in terms of MIPS —years, rounded to the nearest power of ten) required
to factor integers of a given size using the number field sieve. Teams of people can
work together, dedicating thousands or even millions of MIPS—years to factor particular
numbers. Consequently, even without the development of new algorithms, it might not be
surprising to see the factorization, within the next ten years, of integers (not of a special
form) with 200, or perhaps as many as 250 decimal digits.

For further information on factoring algorithms, we refer the reader to [Brg9],
(Br00], [Di84], [Gu75], [0d95], [Po84], {Po90], [Ri94], [Ru83], [WaSm87}, and [Wi84].

Fermat Factorization We now describe a factorization technique that is interesting,
although it is not always efficient. This technique, discovered by Fermat, is known as
Fermat factorization, and is based on the following lemma.

Lemma 3.9. If is an odd positive integer, then there is a one-to-one correspondence
between factorizations of n into two positive integers and differences of two squares that
equal 2.

Proof. Letn be an odd positive integer and let n = ab be a factorization of n into two
positive integers. Then n can be written as the difference of two squares, because

n=ab=s*—1%

where s = (a + b)/2 and t = (@ — b)/2 are both integers because @ and b are both odd.
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Conversely, if 1 is the difference of two squares, say p = 52 _ 1%, then we can factor
n by noting that = (s —1)(s +1).

We leave it to the reader to show that this is a one-to-one correspondence., =

To carry out the method of Fermat factorization, we look for solutions of the
equation 1 = x2 — y2 by searching for perfect squares of the form 12 . n. Hence, to
find factorizations of 7, we search for a square among the sequence of integers

2

¢ —n,(t+1)2—11,(t+2)2—n,...

where 1 is the smallest integer greater than /1. This procedure is guaranteed to terminate,
since the trivial factorization # = - 1 leads to the equation

. n-i—l)z_ n~—I)2
={— 5 .
Example 3.23. We factor 6077 using the method of Fermat factorization. Since 77 <
V6077 < 78, we look for a perfect square in the sequence

782 — 6077 =7
79% — 6077 = 164
80% — 6077 = 323
81% — 6077 = 484 = 222
Since 6077 = 812 — 222, we see that 6077 = (81 — 22)(814-22) =59. 103, «

Unfortunately, Fermat factorization can be very inefficient, To factor » using this
technique, it may be fecessary to check as many as (1 + D/2 — [/n] integers to

—— g.___‘-ﬁ_-‘_;w—‘—._‘;—j.

J_‘The RSA Factoring Challenge '

The RSA Factoring Challen geis an ongoing contest that challenges mathematicians to factor |

this 129-digit number wag factored, but not otherwise. Seventeen years passed before this
challenge was met in 1994, The factorization of RSA-129 using the quadratic sieve method
took approximately 5000 MIPS-years, and was carried oyt in eight months by more than

their list have led to world records. For example, in 1996, a team led by Arjen Lenstraused |
the number field sieve to factor RS5A-130. ‘This took approximately 750 MIPS—years. In
1999, the number field sieve was used to factor RSA-140 and RSA-155, using 2000 and
8000 MIPS—years, respectively. The factorization of RSA-160 in April 2003 is the current
world record for the factorization of a number not of a special form,

I
—_—— ]




128

Primes and Greatest Common Divisors

determine whether they are perfect squares. Fermat factorization works best when it is
used to factor integers having two factors of similar size. Although Fermat factorization
is rarely used to factor large integers, its basic idea is the basis for many more powerful
factorization algorithms used extensively in computer calculations.

The Fermat Numbers

The integers F,, = 22" 11 are called the Fermat numbers. Fermat conjectured that these
integers are all primes. Indeed, the first few are primes, namely Fo =3, F1 = 5 F=17,

F3 =257, and F, = 65,537. Unfortunately, Fs = 22 1 1is composite, as we will now
demonstrate.

Example 3.24. The Fermat number F5 = 2% 4+ 1is divisible by 641, We can show
that 641| Fs without actually performing the division, using several not-so-obvious
observations. Note that

641=5-27 +1=2% 4 5%

Hence,
07 L 1=2 4 1=2 2B 1= (641 - 5228 4 1
—641-28 _ (5.2 + 1=641-22 — (641 — D* + 1
= 641022 — 641 + 4. 641" — 6- 641+ 4).
Therefore, we see that 641 | Fs. «

The following result is a valuable aid in the factorization of Fermat numbers.

Theorem 3.20. Every prime divisor of the Fermat number £, = 22" 4 1is of the form
PR S

The proof of Theorem 3.20 is presented as an exercise in Chapter 11. Here, we
indicate how Theorem 3.20 is useful in determining the factorization of Fermat numbers.

Example 3.25. From Theorem 3.20, we know that every prime divisor of F3 = 22 4
1 = 257 must be of the form 2% -+ 1 =32 . k + 1. Because there are no primes of this
form less than or equal to /257, we can conclude that F3 = 257 is prime. <

Example 3.26. When factoring Fg = 226 + 1, we use Theorem 3.20 to see that ali of
its prime factors are of the form 28k 4+ 1 =256 - k + 1. Hence, we need only perform
trial divisions of Fg by primes of the form 256 - k + 1 that do not exceed \/FG. After
considerable computation, we find that a prime divisor is obtained with & = 1071, that
is, 274,177 = (256 - 10714+ 1) | Fg. «

The Factorization of Fermat Numbers A tremendous amount of effort has been de-
voted to the factorization of Fermat numbers. As yet, no new Fermat primes (beyond
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Fy) have been found. Many mathematicians believe that no additional Fermat primes
exist. We will develop. a primality test for Fermat numbers in Chapter 11, which has
been used to show that many Fermat numbers are composite. (When such a test is used,
it is not necessary to use trial division to show that a number is not divisible by a prime
not exceeding ifs square root.)

As of this writing (2004), a total of 214 Fermat numbers are known to be composite,
but the complete factorizations are known for only seven composite Fermat numbers:
Fs, Fy, F;, Fg, Fy, Fyg, and Fy,. The Fermat number Fy, a number with 155 decimal
digits, was factored in 1990 by Mark Manasse and Arjen Lenstra, using the number field
sieve, which breaks the problem of factoring an integer into a large number of smaller
factoring problems that can be done in parailel. Though Manasse and Lenstra farmed out
computations for the factorization of Fy to hundreds of mathematicians and computer
scientists, it still took about two months to complete the computations. (For details of
the factorization of Fy, see [Ci90].)

The prime factorization of £y was discovered by Richard Brent in 1989, using a
factorization algorithm known as the elliptic curve method {described in detail in {Br89]).
There are 617 decimal digits in F)|, and F;; = 319,489 . 974,849 . Py - Py - Psga, where
P1, Py, and Psgy are primes with 21, 22, and 564 digits, respectively. It took until 1995
for Brent to completely factor Fyg. He discovered, using elliptic curve factorization, that
FIO = 45,592,577 - 6,487,031,809 . P4o . P252, where P,_m and P252 are primes with 40
and 252 digits, respectively.

Many Fermat numbers are known to be composite because at least one prime factor
of these numbers has been found, using results such as Theorem 3.20. It is also known that
F, is composite for n = 14, 20, 22, and 24, but no factors of these numbers have yet been
found. The largest n for which it is known that F, is composite is n = 2,478,782, (Fsgp447
was the first Fermat number with more than 100,000 digits shown to be composite; it
was shown to be composite in July 1999.) Fy, is the smallest Fermat number that has not
yet been shown to be composite, if it is indeed composite. Because of steady advances
in computer software and hardware, we can expect new results on the nature of Fermat
numbers and their factorizations to be found at a healthy rate.

The factorization of Fermat numbers is part of the Cunningham projecr, sponsored
by the American Mathematical Society. Devoted to building tables of all the known
Tactors of integers of the form 5" + 1, where b = 2,3,5 6,7, 10, 11, and 12, the
project’s name refers to A. J. Cunningham, a colonel in the British army, who compiled
a table of factors of integers of this sort in the early years of the twentieth century. The
factor tables as of 1988 are contained in [Br88J; the current state of affairs is available
over the Internet. Numbers of the form 5" & 1 are of special interest because of their
importance in generating pseudorandom numbers (see Chapter 10), their importance in
abstract algebra, and their significance in number theory.

In conjunction with the Cunningham project, a list of the “ten most wanted” integers
to be factored is kept by Samuel Wagstaff of Purdue University. For example, until it was
factored in 1990, £, was on this list. With advances in factoring techniques and computer
power, increasingly larger numbers are included on the list. In the early 1980s, the largest



130

Primes and Greatest Common Divisors

had between 50 and 70 decimal digits, in the early 1990s between 90 and 130 decimal
digits, and today they have between 190 and 200 decimal digits.

Using the Fermat Numbers to Prove the Infinitude of Primes 1t is possible to prove
that there are infinitely many primes using Fermat numbers. We begin by showing that
any two distinct Fermat numbers are relatively prime. The following lemma will be used.

Lemmal.l0. LetF,= 22k + 1 denote the kth Fermat numbser, where k is a nonnegative
integer. Then for all positive integers n, we have

FoFiFy - Fy \=F, -2

Proof. We will prove the lemma using mathematical induction. For n = 1, the identity
reads

F0=F1—2.

This is obviously true, because Fy =3 and F; = 5. Now, let us assume that the identity
holds for the positive integer #, so that

FoFyFy - By = F, — 2

With this assumption, we can easily show that the identity holds for the integer n 4 1,
because

FyF\Fy - By Fy = (FoFyfy - Frl)Fy
=(F,—DF, =" - @ + 1)
=Y 1= 1=F -2 =
This leads to the following theorem.
Theorem 3.21. Letm and n be distinct nonnegative integers. Then the Fermat numbers
F,, and F,, are relatively prime.
Proof. Letus assume that m < n, By Lemma 3,10, we know that
FoF{Fyr o By Fy = F, = 2.
Assume that 4 is a common divisor of F,, and F,. Then, Theorem 1.8 tells us that
dl(FnHFDFIFZ"'Fm"'Fn—l):'z'

Hence, either d = 1 or d = 2. However, since F,, and F, are odd, d camnot be 2.
Consequently, d = L and (F,,, F,) = L -

Using Fermat numbers, we now give another proof that there are infinitely many
primes. First, we note that by Lemma 3.1 in Section 3.1, every Fermat number F, has a
prime divisor p,,. Because (F,, F,,) = 1, we know that p,, # p, whenever m 7 n. Hence,
we can conclude that there are infinitely many primes.
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The Fermat Primes and Geometry The Fermat primes are important in geometry. The
proof of the following famous theorem of Gauss may be found in [Or88).

Theorem 3.22. A regular polygon of # sides can be constructed using a ruler and
compass if and only if » is the product of a nonnegative power of 2 and a nonnegative
number of distinct Fermat primes.

3.6 Exercises

1.

Find the prime factorization of each of the following positive integers,

a) 33,776,925 b) 210,733,237 ¢) 1,359,170,111
. Find the prime factorization of each of the following positive integers.
a) 33,108,075 b} 7,300,977,607 ) 4,165,073,376,607
. Using the Fermat factorization method, factor each of the following positive integers.
a} 143 c)43
b) 2279 dy 11,413
. Using the Fermat factorization method, factor each of the following positive integers.
a) 8051 dy 11,021
b) 73 €) 3,200,399
c) 46,009 ) 24,681,023

« Show that the last two decimal digits of a perfect square must be one of the following

pairs: 00, el, ed, 25, 06, €9, where e stands for any even digit and o stands for any odd
digit. (Hint: Show that %, (50 + n)2, and (50 — n)? all have the same final decimal digits,
and then consider those integers n with0 <n < 25)

- Explain how the result of Exercise 5 can be used to speed up Fermat's factorization

method.

. Show that if the smallest prime factor of n is p.then x? — 2 will not be a perfect square

forx = (n + pz)/ (2 p), with the single exception x = (n + /2.

Exercises 8-10 involve the method of Draim factorization. To use this technique to search
for a factor of the positive integer n = n |, we start by using the division algorithm, to obtain

n=3q4+r, 0=<r <3

Setting mr| = n;, we let

iy =M1 —2q,  ny=m;+ .

We use the division algorithm again, to obtain

1y = 5q3 + ry, 0<r <5,

and we let

my=my—2g;, ny=my+ry.
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We proceed recursively, using the division algorithm, to write
me=0Ck+ Dg+r, 0= <2k+1,
and we define
My =mp_1—2qy 1,  Mp =g
‘We stop when we obtain a remainder 1 = 0.

8. Show that n, =kny — (2k + Digy + g3 + -+ + g and that mp=n; —2-
(gi+g2+- -+ qr-1)-
9, Show thatif (2k 4 1) | », then(2k + 1} | n and n = (2k + Dy
10. Factor 5899 using Draim factorization.
In Exercises 1113, we develop a factorization technique known as Enler’s method. It is
applicable when the integer being factored is odd and can be written as the sum of two squares

in two different ways. Let n be odd and let n = a? + b% = ¢ + d°, where ¢ and ¢ are odd
posilive integers, and b and d are even positive integers.

11. Letu ={a — ¢, b — d). Show that  is even, and thatif r = (g — ¢)/uw and s = {d—Db)u,
then (r,8)=Lr(at+cy=s(d+b),ands | {qg+c)

12. Letsv=a +c¢. Showthatrv =d + b, v == (a + ¢,d + b), and v is even.

13. Conclude that n may be factored as 1 = [(/2)% + (v/2)21¢% + s%).

14, Use Euler’s method to factor each of the following integers.
ay 221 =102 4+ 112 =52 + 147
b) 2501 = 50% + 12 = 49% + 10°
) 1,000,009 = 1000? + 3* = 972% + 2357

15. Show that any number of the form 2%'*2 4 1 can be factored casily by the use of the
identity 4x* + 1= (2x2 + 2x + 1)(2x% — 2x + 1). Factor 2'® 4 1 using this identity.

16. Show that if a is a positive integer and @’ + 1 is an odd prime, then m = 2" for some
positive integer n. (Hint: Recall the identity a™ + 1= (@* + D@D gD
a* +1), where m =kl and ! is odd).

17. Show that the last digit in the decimal expansion of F, = 22" 4 1is 7if n > 2. (Hint:
Using mathematical induction, show that the last decimal digit of 2% is 6.)

18. Use the fact that every prime divisor of F; = 22* 4 1 = 65,537 is of the form 2% 4+ 1=
64k + 1 to verify that F, is prime. (You should need only one trial division.)

19. Use the fact that every prime divisor of F5 =22 + Lis of the form 27k + 1= 128k + 1
to demonstrate that the prime factorization of Fy is Fs = 641-6,700,417.

20. Find all primes of the form 22" 4 5, where # is a nonnegative integer.
21. Estimate the number of decimal digits in the Fermat number F,,.

* 22, What is the greatest common divisor of n and F,, where » is a positive integer? Prove
that your answer is cormrect.

23. Show that the only integer of the form 2™ -{- I, where m is a positive integer, that is a
power of a positive integer (i.e., is of the form 1%, where n and k are positive integers
with & > 2) occurs whenm = 3. :
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24. Factoring kn by the Fermat factorization method, where & is a small positive integer, is
sometimes easier than factoring n by this method. Show that to factor 901 by the Fermat
factorization method, it is easier to factor 3 - 901 = 2703 than to factor 901

Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Using trial division, find the prime factorization of several integers of your choice
exceeding 10,000,

2. Factor several integers of your choice exceeding 10,000, using Fermat factorization.

3. Factor the Fermat numbers 7 and ¥; using Theorem 3.20.

Programming Projects

Write programs using Maple, Mathematica, or a language of your choice to do the following.
1. Given a positive integer n, find the prime factorization of n.
2. Given a positive integer », perform the Fermat factorization method on #.

3. Given a positive integer n, perform Draim factorization on n (see the preamble to
Exercise 8).

4. Check the Fermat number F,, where n is a positive integer, for prime factors, using
Theorem 3.20.

Linear Diophantine Equations

Consider the following problem: A man wishes to purchase $510 of travelers’ checks,
The checks are available only in denominations of $20 and $50. How many of each
denomination should he buy? If we let x denote the number of $20 checks and y the
number of $50 checks that he should buy, then the equation 20x + 30y = 510 must be
satisfied. To solve this problem, we need to find all solutions of this equation, where both
x and y are nonnegative integers.

A related problem arises when a woman wishes to mail a package. The postal clerk
determines the cost of postage to be 83 cents, but only 6-cent and 15-cent stamps are
available. Can some combination of these stamps be used to mail the package? To answer
this, we first let x denote the number of 6-cent stamps and y the number of 15-cent stamps
to be used. Then we must have 6x + 15y = 83, where both x and y are nonnegative
integers.

When we require that solutions of a particular equation come from the set of integers,
we have a diophantine equation. These equations get their name from the ancient Greek
mathematician Diophantus, who wrote on equations where solutions are restricted to
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rational numbers. The equation ax + by = ¢, where a, b, and ¢ are integers, is called a
linear diophantine equation in two variables.

Note that the pair of integers (x, y) is a solution of the linear diophantine equation
ax + by = ¢ if and only if the (x, y) is a lattice point in the plane that lies on the
line ax + by = ¢. We illustrate this in Figure 3.2 for the linear diophantine equation
2x 3y =3

The first person to describe a general solution of linear diophantine equations was the
Indian mathematician Brahmagupta, who included it in a book he wrote in the seventh
century. We now develop the theory for solving such equations. The following theorem
tells us when such an equation has solutions, and when there are solutions, explicitly
describes them.

Theorem 3.23. Leta and b be integers with d = (a, b). The equation ax - by = ¢ has
no integral solutions if d J ¢. If d | ¢, then there are infinitely many integral solutions.
Moreover, if x = xg, ¥ = Yp is a particular solution of the equation, then all solutions are
given by

x=xq+ (bjdn, y=yo—{a/d)n,
where n is an infeger.

Proof Assume that x and y are integers such that ax + by = ¢. Then, because d [ a
and d | b, by Theorem 1.9, d | ¢ as well. Hence, if 4 f ¢, there are no integral solutions
of the equation.

Now assume that d | ¢. By Theorem 3.8, there are integers s and ¢ with
(3.3) d=as + bt.

Since d | ¢, there is an integer e with de =c. Multiplying both sides of (3.3) by e, we
have

c=de = (as -+ br)e = a(se) + b(te).

Hence, one solution of the equation is given by x = xg and y = yg, where xg = se and
Yo =1e.

DIOPHANTUS (c. 250) wrote the Arithetica, which is the earliest known book on
algebra; it contains the first systcmatic use of mathematical notation to represent unknowns
in equations and powers of these unknowns. Almost nothing is known about Diophantus,
other than that he lived in Alexandria around 250 C.E. The only source of details about his
life comes from an epigram found in a collection called the Greek Anthology: “Diophantus
passed one sixth of his life in childhood, one twelfth in youth, and one seventh as a
bachelor, Five years after his marriage was born a son who died four years before his father,
at half his father’s age.” From this the reader can infer that Diophantus lived to the age
of 84.




3.7 Linear Diophantine Equations 135
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Figure 3.2 Solutions of 2x + 3y =5 in integers x and y correspond te the lattice points on the
line 2x +3y =5.

To show that there are infinitely many solutions, let x = xp+ (bf/d)n and y =
Yo — {a/d)n, where n is an integer. We will first show that any pair (x, ¥), with x =
xo+ (Bfd)n, y =yy — (a/d)n, where n is an integer, is a solution; then we will show
that every solution must have this form, We see that this pair (x, y) is a solution, because

ax +by=axy+alb/din + by, — bla/dn = axy + byg =c.

BRAUMAGUPTA (598-670), thought to have been born in Ujjain, India, became the
head of the astronomical observatory there; this observatory was the center of Indian math-
ematical studies at that time. Brahmagupta wrote two important books on mathematics
and astronomy, Brahma-sphuta-siddhanta (“The Opening of the Universe”) and Khan-
dakhadyaka, written in 628 and 665, respectively. He developed many interesting formulas
and theorems in planar geometry, and studied arithmetic pro gressions and quadratic equa-
tions. Brahmagupta developed new algebraic notation, and his understanding of the number
system was advanced for his time. He is considered to be the first person to describe a gen-
eral solution of linear diophantine equations. In astronomy, he studied eclipses, positions
of the planets, and the length of the year.
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We now show that every solution of the equation ax - by = ¢ must be of the form
described in the theorem, Suppose that x and y are integers with ax + by =c. Because

axp + byy =<,
by subtraction we find that
(ax + by) — (axg -+ bygy =0,

which implies that

a(x — xg) + by — o) =0.
Hence,

a(x — xg} = b{yp — ¥).
Dividing both sides of this last equation by d, we see that
(a/d}(x — xo) = (b/d) (3o — ¥)-

By Theorem 3.6, we know that (a/d, b/d) = 1. Using Lemma 3.4, it follows that
(a/d) | (yo — ¥). Hence, there is an integer n with (a/d}n =y — ¥ this means that
y = yg — (a/d)n. Now, putting this value of y into the equation a{x — xp) = b(¥p — ¥,
we find that a(x — xo) = b(a/d)n, which implies that X = xg + {b/d)n. a

The following examples illustrate the use of Theorem 3.23.

Example 3.27. By Theorem 3.23, there are no integral solutions of the diophantine
equation 15x + 6y =7, because (15, 6) = 3but3 f7. «

Example 3.28. By Theorem 3.23, there are infinitely many solutions of the diophan-
tine equation 21x -+ 14y = 70, because (21,14) =7 and 7{70. To find these solu-
tions, note that by the Buclidean algorithm, 121+ (=1 - 14 =7, so that 10- 21+
(—10) - 14 = 70. Hence, xp =10, yp=—10is a particular solution. All solutions are
given by x = 10 4 2n, y = —10 — 3n, where n is an integer. -

We will now use Theorem 3.23 to solve the two problems described at the beginning
of the section.

Example 3.29. Consider the problem of forming 83 cents in postage using only 6- and
15-cent stamps. If x denotes the number of 6-cent stamps and y denotes the number
of 15-cent stamps, we have 6x -+ 15y = 83. Since (6, 15) = 3 does not divide 83, by
Theorem 3.23 we know that there are no integral solutions. Hence, no combination of
6- and 15-cent stamps gives the correct postage. -

Example 3.30. Consider the problem of purchasing $510 of travelers’ checks, using
only $20 and $50 checks. How many of each type of check should be used?
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Let x be the number of $20 checks and let ¥ be the number of $50 checks. We have
the equation 20x + 50y = 510. Note that the greatest common divisor of 20 and 50 is
(20, 50) = 10. Because 10 | 510, there are infinitely many integral solutions of this linear
diophantine equation. Using the Euclidean algorithm, we find that 20(-2) + 50 = 10.
Multiplying both sides by 51, we obtain 20(—102) + 50(51) = 510. Hence, a particuiar
solution is given by xy = —102 and Yo = 51. Theorem 3.23 tells us that all integral
solutions are of the form ¥ = 102 4 57 and ¥ =51~ 2n. Because we want both x and
¥ to be nonnegative, we must have —102 + 5» = 0and 51 - 2n > 0; thus, n > 20 2/5
andn < 251/2. Because n is an integer, it follows that n = 21, 22, 23, 24, or 25. Hence,
we have the following five solutions: (r, ¥y =(3,9), (8,7, (13, 5), (18,3}, and (23, 1),
So the teller can give the customer 3 $20 checks and 9 $50 checks, 8 $20 checks and 7
$50 checks, 13 $20 checks and 5 $50 checks, 18 $20 checks and 3 $50 checks, or 23
$20 checks and 1 $50 check. «

We can extend Theorem 3.23 to cover linear diophantine equations with more than
two variables as the following theorem demonstrates.

Theorem3.24. Ifa;,ay,. .., @, are nonzero positive integers, then the equation ax; +
@yxy -+ - - + a,x, = c has an integral solution if and only ifd = (ay, a, . . ., a,) divides
c¢. Furthermore, when there is a solution, there are infinitely many solutions,

Proof. If there are integets xy, x5, . . . , %y such that ayx; + apory + - - - 4+ a,x, = c, then
because d divides g fori=1,2,...,n, by Theorem 1.9, d also divides c. Hence, if
d [ c there are no integral solutions of the equation.

We will use mathematical induction to prove that there are infinitely many integral
solutions when d | ¢. Note that by Theorem 3.23 this is true whenn =2,

Now, suppose that there are infinitely many solutions for all equations in » vari-
ables satisfying the hypotheses. By Theorem 3.9, the set of linear combinations ayx, +
@y41% 41 Is the same as the set of multiples of (a4, ay1.1). Hence, for every integer y
there are infinitely many solutions of the linear diophantine equation a, x,, + By Xy =
(@ @41} y. 1t follows that the original equation in n 4 1 variables can be reduced to a
linear diophantine equation in # variables:

apxy -+ Xy A+ o+ 1%y + (a.rr! an-l-l)y =

Note that ¢ is divisible by (a, €42, .+ @y_y, (ay, @y 1)) because, by Lemma 3.2, this
greatest common divisor equals (a), ay, . . ., @y, ty41). By the inductive hypothesis, this
equation has infinitely many integer solutions, as it is a linear diophantine equation in »
variables where the greatest common divisor of the coefficients divides the constant c.
It follows that there are infinitely many solutions to the original equation, [

A method for solving linear diophantine equations in more than two variables can
be found using the reduction in the proof of Theorem 3.24. We leave an application of
Theorem 3.24 to the exercises.
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3.7 Exercises
1.

For each of the following linear diophantine equations, either find all solutions, or show
that there are no integral solutions.

a) 2x+5y=11

by 17x + 13y =100
¢) 21x + 14y =147
d) 60x + 18y =97

e) 1402x + 1969y =1

. For each of the following linear diophantine equations, either find all solutions, or show

that there are no integral solutions.
a) 3x +4y =7

by 12x 4+ 18y =50

¢) 30x + 47y =—11

d) 25x + 95y =970

e) 102x + 1001y =1

. A Japanese businessman returning home from a trip to North America exchanges his

-

U.5. and Canadian dollars for yen. If he receives 15,286 yen, and received 122 yen for
each U.S. and 112 yen for each Canadian dollar, how many of each type of currency did
he exchange?

A student returning from Europe changes his euros and Swiss francs into U.S. money.
If she receives $46.26, and received $1.11 for each euro and 83¢ for each Swiss franc,
how much of each type of currency did she exchange?

. A professor returning home from conferences in Paris and London changes his euros

and pounds into U.S. money. If he receives $117.98, and received $1.11 for each euro
and $1.69 for each pound, how much of each type of currency did he exchange?

. The Indian astronomer and mathematician Mahavira, who lived in the ninth century,

posed this puzzle: A band of 23 weary travelers entered a lush forest where they found
63 piles each containing the same number of plantains and a remaining pile containing
seven plantains. They divided the plantains equally. How many plantains were in each
of the 63 piles? Solve this puzzle.

. A grocer orders apples and oranges at a total cost of $8.39. If apples cost him 25¢ each

and oranges cost him 18¢ each, how many of each type of fruit did he order?

. A shopper spends a total of $5.49 for oranges, which cost 18¢ each, and grapefriit, which

cost 33¢ each. What is the minimum number of pieces of fruit the shopper could have
bought?

. A postal clerk has only 14- and 21-cent stamps to sell. What combinations of these may

10.

be used to mail a package requiring postage of exactly each of the following amounts?
a) $3.50 b) $4.00 ) $7.77

At a clambake, the total cost of a lobster dinner is $11 and of a chicken dinner is $8.
What can you conclude if the total bill is each of the following amounts?

a) $777 b) $96 c) $69
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* 12,

13.
14.
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Find all integer solutions of each of the following linear diophantine equations.
a) 2x +3y+4dz=5

b) 7x + 21y 4357 =8

¢} 100x + 102y 4 103z =1

Find all integer solutions of each of the followin g linear diophantine equations.

a) 2x -+ 5xp +4xy + 33, =5

b) 12x1 -+ 2L'f2 + 9.?3 - 151’4 =9

¢} 15x; + 6xy + 10x3+ 21xy + 35x5=1

‘Which combinations of pennies, dimes, and quarters have a total value of 9Gg7

How many ways can change be made for one dollar, using each of the following coins?
a) dimes and quarters

b} nickels, dimes, and quarters
¢) pennies, nickels, dimes, and quarters

In Exercises 15-17, we consider simultaneous linear diophantine equations. To solve these,
first eliminate all but two variables and then solve the resulting equation in two variables,

15,

16.

17.

18.

Find all integer solutions of the following systems of linear diophantine equations.

Ax+ y+ z=100
x4+ 8y + 30z =156

blx+ y+ z=100
r4+6y+2iz=121

x4+ y+ z4+ w=100
x4 2y 43z 4w =300
x +4y 49z 4+ 16w = 1000

A piggy bank contains 24 coins, all of which are nickels, dimes, or quarters. If the total
value of the coins is two dollars, what combinations of coins are possible?

Nadir Airways offers three types of tickets on their Boston-New York flights, First-
class tickets are $140, second-class tickets are $110, and standby tickets are $78. If 69
passengers pay a total of $6548 for their tickets on a particular flight, how many of each
type of ticket were sold?

Is it possible to have 50 coins, all of which are pennies, dimes, or quarters, with a total
worth $37

Let @ and b be relatively prime positive integers, and let n be a positive integer. A solution
(x, y) of the linear diophantine equation ax + by = n is nonnegative when both x and y are
nonnegative,

= 19,
% 20,
* 21,

Show that whenevern > (@ — (b — 1), there is a nonnegative solution of ax + by =n.
Show thatif n = ab — a — b, then there are no nonnegative solutions of ax + by = n.

Show that there are exactly (a — (b - 1) /2 nonnegative integers n < ab — a — b such
that the equation has a nennegative solution.
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22. The post office in a small Maine town is left with stamps of onty two values. They
discover that there are exactly 33 postage amounts that cannot be made up using these
stamps, including 46¢. What are the values of the remaining stamps?

% 23. A Chinese puzzle found in the sixth-century work of mathematician Chang Ch’iu-chien,
called the “hundred fowls” problem, asks: If a cock is worth five coins, a hen three coins,
and three chickens together are worth one coin, how many cocks, hens, and chickens,
totaling 100, can be bought for 100 coins? Solve this problem.

= 24, Find all solutions where x and y are integers to the diophantine equation

1 1 1

Xy 14

3.7 Computational and Programming Exercises

Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Determine which positive integers are of the form ax + by, where x and y are nonnega-
tive integers and a and b are relatively prime positive integers of your choice. Use your
evidence to confirm the results of Exercises 19-21.

Programming Projects

Write programs using Maple, Mathematica, or a language of your choice to do the
following.

1. Find the solutions of a linear diophantine equation in two variables.

2. Find the positive solutions of a linear diophantine equation in two variables.
3. Find the solutions of a linear diophantine equation in three variables.
4

. Find all positive integers » for which the linear diophantine equation ax + by = n has
no positive solutions (see the preamble to Exercise 19).
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Congruences

Introduction

The language of congruences was invented by the great German mathematician Gauss. It
allows us to work with divisibility relationships in much the same way as we work with
equalities. We will develop the basic properties of congruences in this chapter, describe
how to do arithmetic with congruences, and study congruences involving unknowns,
such as linear congruences. An example leading to a linear congruence is the problem of
finding all integers x such that when 7x is divided by 11, the remainder is 3. We will also
study systems of linear congruences that arise from such problems as the ancient Chinese
puzzle that asks for a number that leaves a remainder of 2, 3, and 2, when divided by
3, 5, and 7, respectively. We will learn how to solve systems of linear congruences in
one unknown, sich as the system that results from this puzzle, using a famous method
known as the Chinese remainder theorem. We will also learn how to solve polynomiat
congruences. Finally, we will introduce a factoring method, known as the Pollard rho
method, which we use congruences to specify.

Introduction to Congruences

The special language of congruences that we introduce in this chapter, which is extremely
useful in number theory, was developed at the beginning of the nineteenth century by
Karl Friedrich Gauss, one of the most famous mathematicians in history.

The language of congruences makes it possible to work with divisibility relation-
ships much as we work with equalities. Prior to the introduction of congruences, the
notation used for divisibility relationships was awkward and difficult to work with.
The introduction of a convenient notation helped accelerate the development of number
theory.

141
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Definition. Letm be a positive integer. If @ and b are integers, we say that a is congruent
to b modulom ifm | (@ — D).

Tf a is congruent to b modulo m, we write @ = & (mod m). If m [ (@ — b), we write
a # b (mod m), and say that @ and b are incongruent modulo m. The integer i is called
the modulus of the congruence. The plural of modulus is moduli.

Example 4.1, We have 22 =4 (mod 9), since 9 | (22 — 4) = 18. Likewise 3= -6
{mod 9) and 200 = 2 (mod 9). On the other hand, 13 % 5 (mod 9) since 9 } (13— 3) =3&.
-«

Congruences often arise in everyday life. For instance, clocks work either modulo
12 or 24 for hours and modulo 60 for minutes and seconds; calendars work modulo 7 for
days of the week and modulo 12 for months. Utility meters often operate modulo 1000,
and odometers usvally work module 100,000,

In working with congruences, we will sometimes need to transiate them into equal-
ities. The following theorem helps us to do this.
Theorem 4.1, If @ and b are integers, then a = & (mod m) if and only if there is an

integer k such that @ = b + km.

Proof M a=b (modm), then m | (¢ — b). This means that there is an integer k with

km=a—b,sothata =b -+ km.

KARL FRIEDRICH GAUSS (1777-1855) was the son of a bricklayer. It was
quickly apparent that he was a prodigy. In fact, at the age of 3, he corrected
an error in his father’s payroll, In his first arithmetic class, the teacher gave
an assignment designed to keep the class busy, namely to find the sum of the
first 100 positive integers. Gauss, who was § at the time, reatized that this
sum is 50 - 101 = 5050, because the terms can be grouped as 1+ 100 = 101,
2493=101,...,49+ 52 =101l and 50 + 51 = 101.1n 1796, Gauss made an
important discovery in an area of geometry that had not progressed since ancient
times. In particular, he showed that a regular keptadecagon (17-sided polygon) could be drawn ssing
just a Tuler and & compass. In 1799, he presented the first rigorous proof of the fundamental theorem
of algebra, which states that a polynomial of degree n with real coefficients has exactly 2 roots, Gauss
made fundamental contributions te astronomy, including calculating the orbit of the asteroid Ceres. On
the basis of this calculation, Gauss was appointed director of the Géttingen Observatory. He laid the
foundations of modern number theory with his book Disquisitiones Arithmeticae in 1801, Gauss was
called “Princeps Mathematicorum” (the Prince of Mathematicians) by his contemporaries. Although
Gauss is noted for his many discoveries in geometry, algebra, analysis, astronomy, and mathematical
physics, he had a special interest in number theory. This can be seen from his statement: *Mathematics
is the queen of sciences, and the theory of numbers is the queen of mathematics.” Gauss made most of
his important discoveries early in his life, and spent his later years refining them. Gauss made several
fundamental discoveries that he did not reveal. Mathematicians making the same discoveries were
often surprised to find that Gauss had described the results years earlier in his unpublished notes.
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Conversely, if there is an integer k with @ = b - km, then km = a - b. Hence
n [ {a — b), and consequently, @ = b {mod m). n

Example 4.2. We have 19 = —2 (mod 7) and 19 = —2 +3-.7. «
The following proposition establishes some important properties of congruences.

Theoremd.2. Letm beapositive integer. Congruences modulo s satisfy the following
properties:

(1) Reflexive property. If a is an integer, then g = a (mod m).
(i) Symmetric property. If a and b are integers such that a = b (mod m), then
b =a (mod m).
(iif) Transitive property. If a, b, and ¢ are intcgers with @ = b (mod m) and b =
¢ (mod m), then a = ¢ (mod m).
Proof.

(i) We see that a = a (mod m), since m |(a—a)=0,

(i) If a =b (modm), then m | (a — b). Hence, there is an integer k such that
km =a — b. This shows that (—k)m = — a,sothatm | (b — a). Consequently,
b =qa (mod m).

(iiiy fa =5 (mod m) and b = ¢ (mod m),thenm | (@ — by andm | (b — ¢). Hence,
there are integers & and ! such that km — g — b and Im = b — c. Therefore,
a—c=@-b+b-c)=km+tm=(k+ Dym. It follows that m | (q@ — ¢)
and g = ¢ {mod m). n

By Theorem 4.2, we see that the set of integers is divided into m different sets called
congruence classes modulo m, each containing integers that are mutually congruent
modulo 1.

Example 4.3. The four congruence classes modulo 4 are given by

=8 —4=0=4= 8=, (mod4)
e=—7T=-3=1=5=9=... (mod4)
== =2=0=10=. .. (mod 4)
e==3=-1=3=7=11=... (mod 4). <

Suppose that nt is a positive integer. Given an integer a, by the division algorithm
we have @ = bm + r, where 0 < » =m — 1. We call r the leasr ronnegative residue of g
modulo #1. We say that r is the result of reducing a modulo m. Similarly, when we know
that g is not divisible by m, we call » the least positive residue of g modulo m,

Another commonly used notation, especially in computer science applications,
is 2 mod m = r, which denotes that r is the remainder obtained when a is divided by m1.
For example, 17 mod 5=2 and —8 mod 7 = 6. Although we do not use such notation
in this book, it is commonly used in other contexts.
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Now note that from the equation @ = b + r, it follows that @ = r {mod m). Hence,
every integer is congruent modulo m to one of the integers of the set 0, 1,...,m — 1,
namely the remainder when it is divided by m. Since no two of the integers 0, 1,. . . ,m — 1
are congruent modulo s, we have m integers such that every integer is congruent to
exactly one of these m integers.

Definition. A complete system of residues modulo m is a set of integers such that cvery
integer is congruent modulo m to exactly one integer of the set.

Example 4.4, The division algorithm shows that the set of integers 0, 1,2,...,m — 1
is a complete system of residues modulo m. This is called the set of least nonnegative
residues modulo m. -«

Example 4.5. Letm be an odd positive integer. Then the set of integers

m—1 ’”""3,___,““1’0’1,__.,'""3,"1_1,
2 2 y 2

the set of absolute least residues modulo m, is a complete system of residucs. <

1

We will often do arithmetic with congruences, which is called modular arithmetic.
Congruences have many of the same properties that equalities do. First, we show that
an addition, subtraction, or multiplication to both sides of a congruence preserves the
congruence,

Theoremd.3. Ifa, b, ¢, andm are integers, with m > 0, such that ¢ = b (mod m), then

i a+c=b+c(modm),
(iiy a —c=b—c(modm),
(iii) ac = bc (mod nt).

Proof. Because a = b (mod m), we know that m | (¢ — b). From the identity
(a+c)—(b+c)=a—b, we see that m | ({a + ¢) — (b + ¢)), so that (i) follows.
Likewise, (ii} follows from the fact that (a — ¢) — (b — ¢} = a — b. To show that (iii)
holds, note that ac — bc = c(a — k). Because s | {a — b}, it follows that m | c(a ~ ),
and hence, ac = bc (mod m). n

Example 4.6. Because 19 = 3 (mod 8), it follows from Theorem 4.3 that 26 =19 +
T=3+7=10{mod8),15=19—-4=3—-4=~1(mod 8),and38=19-2=3.-2=
6 (mod 8}, -«

What happens when both sides of a congruence are divided by an integer? Consider
the following example.

Example 4,7. Wehave 14 =7.2=4-2 =8 (mod 6). But we cannot cancel the com-
mon factor of 2, because 7 # 4 (mod 6). <
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This example shows that it is not necessarily true that we preserve a congruence
when we divide both sides by an integer. However, the following theorem gives a valid
~congruence when both sides of a congruence are divided by the same integer.

Theorem 4.4. If a, b, ¢, and m are integers such that m > 0,d = (c,m), and ac =
be (mod m), then a = b (mod m/d). ..

Progf. If ac = be (mod m), we know that m | (ae — bc) = e{a — b). Hence, there is
an integer k with c{a — b) = km. By dividing both sides by d, we have {¢/d)a — b) =
k(m/d). Because (m/d, c/d) = 1, by Lemma 3.4 it follows that m/d | (¢ — b). Hence,
a = b (mod m/d). x

Example 4.8. Because 50 = 20 (mod 15) and (10, 15) =5, we sce that 50/10 =
20/10 (mod 15/5), or 5 =2 (mod 3). «

The following corollary, which is a special case of Theorem 4.4, is used often; it
allows us to cancel numbers that are relatively prime to the modulus m in congruences
modulo m.

Corollary 44.1. If a, b, ¢, and m are integers such that m > 0, (¢, m) =1, and
ac = be {mod m), then a = b (mod m).

Example 4.9. Since 42 =7 (mod 5) and (5,7) = 1, we can conclude that 42/7 =
7/7 (mod 53, or that 6 = 1 (mod 5). =

The following theorem, which is more general than Theorem 4.3, is also useful. Iis
proof is similar to the proof of Theorern 4.3,

Theorem 4.5. If a, b, ¢, d, and m are integers such that m > 0, ¢ = b (mod m), and
¢ =d (mod m), then

i) at+c=b+dmodm),
(i) a—e=5b—d (modm),
(i1} ac = bd (mod m).

Proof. Because a = b (mod m) and ¢ = d (mod m), we know that m | (@ — b) and
m | (¢ — d). Hence, there are integers k and ! withkm =a — bandIm = ¢ — 4,

To prove (i), note that (a +¢) — (b +d) =(a — b) + (c—dy=km+im=
(k +Dm. Hence, m | [(a + ¢) — (b + d)]. Therefore, a + ¢ = b + d (mod m).

To prove (ii), note that (@ —¢) — (b — d) = (a — by —{c—dy=km —Im =
(k — I)m. Hence, m|[{a — ¢} — (b — d)], so that @ — ¢ = b — d (mod m).

To prove (iii), note that ac — bd = ac — bc + be — bd = c(a — b) + b(c — d) =
ckm + blm = m{ck + bl). Hence, m | (ac — bd}. Therefore, ac = bd (mod m). [ |
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Example 4.10. Because 13 =3 (mod 5) and 7 = 2 (mod 5), using Theorem 3.5 we
see that 20=13+7=3+2=5(mod5), 6=13—-7=3—2=1(mod 5), and 91 =
13.7=3.2 =06 (mod 5). -«

The following lemma helps us to determine whether a set of m numbers forms a
complete set of residues modulo m.

Lemmad.l. A setofm incongruentintegers modulo m forms a complete set of residues
modulo m.

Proof. Suppose that a set of m incongruent integers modulo mz does not form a complete
set of residues modulo m. This implies that at least one integer a is not congruent to any
of the integers in the set. Hence, there is no integer in the set congruent module m to
the remainder of @ when it is divided by m1. Hence, there can be at most m — 1 different
remainders of the integers when they are divided by m. It follows (by the pigeonhole
principle, which says that if more than n objects are distributed into n boxes, at least two
objects are in the same box) that at least two integers in the set have the same remainder
modulo . This is impossible, because these integers are incongruent modulo m. Hence,
any m incongruent integers modulo i form a complete system of residues modulo m.

n

Theorem 4.6. Ifry, 7y, . . . , 7}y is 2 complete system of residues modulo m, and if a
is a positive integer with (a,m} = 1, then

ari+b,ars +b,...,ar, +b
is a complete system of residues modulo m for any integer b.
Proof. First, we show that no two of the integers

ary+b,ars + b, ... ,ar, +b
are congruent modulo m. To see this, note that if

arj + b = ary + & (mod m),
then, by (ii} of Theorem 4.3, we know that
ar = ary (mod m).
Because {(a, m) = 1, Corollary 4.4.1 shows that
rj=r; {mod m).

Given that r; 5 ry (mod m) if j # k, we conclude that j = k.

By Lemuma 4.1, because the set of integers in question consists of m incongruent
integers modulo m, these integers form a complete system of residues modulo m. =

The following theorem shows that a congruence is preserved when both sides are
raised to the same positive integral power.
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Theorem 4.7, Ifa, b, k, and m are integers such thatk > 0, m > 0, anda = b {mod m),
then a* = b* (mod m). .

Proof. Because a = b (mod m), we have m | (@ — b), and because
a* — bt = (a — by(a* 1+ o2 +-otabt 2 phly

we sce that {a — b) | (a* — b*). Therefore, by Theorem 1.8 it follows that m | (@* — bY).
Hence, a* = b* (mod ). ]

Example 4.11. Since 7= 2 (mod 5), Theorem 4.7 tells us that 343 = 7 — 23 =
8 {mod 5), «

The following result shows how to combine congruences of two numbers to different
moduli.

Theorem 4.8. ifa =5 (mod mp,a=b(modm,),...,a=h {mod m,), where a, b,
my, My, ..., iy are integers with m 1> Mg, . . ., Nty positive, then

a=b (mod [, m,,. .. 1),
where [m, my, ..., m}is the least common multiple of my, my, . . ., my,

Proof. Because a = b (mod m s a = b (mod my), ... ,a=h (mod my.), we know that
mplla—=>56),my|a—»),..., my | {a — b). By Exercise 39 of Section 3.5 we see that

[myma, ..., 0] (@ —b).
Consequently,
a=b(mod [my,ny, ..., m). -
The following result is an immediate and useful comsequence of this theorem.
Corollary 4.8.1. Ifa=b (mod m tha=b(modmy),...,a=b (mod my), where a

and b are integers and nty, my, . . ., my are pairwise relatively prime positive integers,
then

a=b(modmpm, - my).

Proof.  Sincemy,im,, . .., my are pairwise relatively prime, Exercise 68 of Section 3.5
tells us that

fmp,ms, ... shg]=mypmy M.
Hence, by Theorem 4.8, we know that

a=b{modmmy - my). -

Modular Exponentiation

In our subsequent studies, we will be working with congruences involving large pow-
ers of integers. For example, we will want fo find the least positive residue of 264
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modulo 645. If we attempt to find this least positive residue by first computing 2044
we would have an integer with 194 decimal digits, a most undesirable thought. Instead,
to find 2°% modulo 645 we first express the exponent 644 in binary notation:

(644) ;p = (1010000100),.

Next, we compute the least positive restdues of 2, 22,24, 2%, . . ., 2°1% by successively
squaring and reducing modulo 645. This gives us the congruences

2 = 2 (mod645),

22 = 4 (mod645),

2 = 16 (mod 645),

22 = 256 (mod 645),

216 = 391 (mod 645),

232 = 16 (mod 645),

284 = 256 (mod 645),

2128 = 391 (mod 645),

22% = 16 (mod 645),

2°12 = 256 (mod 645).

We can now compute 2% modulo 645 by multiplying the least positive residues of the
appropriate powers of 2. This gives

264 _ 9SI2H28H _ 9512512854 _ 950 . 301 . 16 = 1,601,536 = 1 (mod 645).

We have just illustrated a general procedure for modular exponentiation, that is, for
computing bY modulo m, where b, m, and N are positive integers. We first express the
exponent N in binary notation, as N = {@zay_1 - . . ajdp),. We then find the least positive
residues of b, B2, b%, . . ., 5 modulo m, by successively squaring and reducing modulo
m1. Finally, we multiply the least positive residues modulo m of bY forthose j witha i=1
reducing modulo m after each multiplication.

In our subsequent discussions, we will need an estimate for the number of bit opera-
tions needed for modular exponentiation. This is provided by the following proposition.

Fheorem 4.9. Let b, m, and N be positive integers such that b < m, Then the least
positive residue of #¥ modulo m can be computed using O((logy m)? logy N) bit
operations.

Proof. To find the least positive residue of bY modulo m, we can use the algorithm
just described. First, we find the least positive residues of 5, bz, B, bzk modulo 2,
where 2% < N < 2¥+1 by successively squaring and reducing modulo n2. This requires
a total of O((log, m)? log, N) bit operations, because we perform [log; N squarings
modulo n1, each requiring O ({log, m)%) bit operations, Next, we multiply together the
least positive residues of the integers b*' corresponding to the binary digits of N that
are equal to one, and we reduce modulo m after each multiplication. This also requires
O((log, m)? log, N) bit operations, because there are at most log, N multiplications,
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each requiring O ((log, m)?) bit operations, Therefore, a total of O((log, m)? log, N)
bit operations is needed. ]

4.1 Exercises

1. Show that each of the following congruences holds,

a) 13 =1 (mod 2) e) —2=1(mod3)

B 22 =7 {mod 5) ) —3=30(mod 1D
) 91=0 (mod 13) g) 111 = -9 (mod 40)
d) 69 =62 (mod 7) h) 666 = 0 (mod 37)

« Determine whether each of the following pairs of integers is congruent modulo 7.

a) 1,15 d)—1,8
b) 0,42 e)—9,5
€)2,99 f)y —1,699

- For which positive integers m is each of the following statements true?

a) 27 = 5 (mod »1)
b) 1000 = 1 (mod )
¢) 1331 =0 (mod m)

. Show that if a is an even integer, then a = 0 (mod 4), and if & is an odd integer, then

a?=1(mod 4),

. Show that if @ is an odd integer, thena? =1 (mod 8).

6. Find the least nonnegative residue modulo 13 of each of the following integers.

10

ay22 dy —1
b) 100 ey —100
c) 1001 f) —1000
. Find the least positive residue of 1! 4- 21+ 31+ - . . + 100! modulo each of the following
integers.
a)2 c) 12
by 7 d) 25

» Show thatif a, b, m, and n arc integers such thatm > 0,n = 0, n | m,and a = b (mod m),

then @ = & (mod »).

» Show thatif a, b, ¢, and m are integers such thatc > 0, m > 0, and a = b (mod m), then

ac = be (mod mce).

Show that if a, b, and ¢ are integers with ¢ > 0 such that a = b(mod ¢}, then (a,c) =
(b, c).

11, Show thatifa; =b; (modm) for j=1,2,..., n, where m is a positive integer and a;,
J i J

bj, Fi=12,...,n,areintegers, then
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n n
a) Z a;= E b; (mod m).
j=1 j=1

in n
b) H a; = H b; (mod m}.
j=l

j=1

In Exercises 12-14, construct tables for arithmetic modulo 6 using the least nonnegative
residues modulo 6 to represent the congruence classes,

12.
13.
14.
15.

16.
17.
18.

19,

20.

21.

22.
23.
24,
25,
26.

27.

28.

Construct a table for addition modulo 6.
Construct a table for subtraction modulo 6.
Construct a table for multiplication modulo 6.

What time does a clock read

a) 29 hours after it reads 11 o’clock?
b) 100 hours after it reads 2 o’clock?
¢) 50 hours before it reads 6 o'clock?

Which decimal digits occur as the final digit of a fourth power of an integer?
What can you conclude if a® = b? (mod p), where @ and b are integers and p is prime?

Show that if a* = b* (mod m) and a*t! = b**! (mod m), where a, b, k, and m are
integers with & > 0 and m > 0 such that (2, m) = 1, then a = b (mod m). If the condition
(a, m) = 1 is dropped, is the conclusion that @ = b (mod m) still valid?

Show that if n is an odd positive integer, then
14+2+34+..-+(n— D=0 (modn).
Is this statement true if # is even?
Show that if » is an odd positive integer or if » is a positive integer divisible by 4, then
P+224+3+-- + (=1 =0(modn).
Is this statement true if # is even but not divisible by 47
For which positive integers n is it true that
B4+22 4344+ (1 — D*=0 (mod n)?

Show by mathematical induction that if n is a positive integer, then 47 = 14 3n {mod 9).
Show by mathematical induction that if » is a positive integer, thén 5= 1+ 4n (mod 16).
Give a complete system of residues modulo 13 consisting entirely of odd integers.
Show that if n = 3 (mod 4), then »# cannot be the sum of the squares of two integers.

Show that if p is prime, then the only solutions of the congruence x% = x (mod p) are
those integers x such that x =0 or 1 (med p).

Show that if p is prime and k is a positive integer, then the only solutions of 2=
x (mod pF) are those integers x such that x = 0 or I (mod pk).

Find the least positive residues modulo 47 of each of the following integers.

a) 232 b) 247 C) 2200
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29. Letmy,my, . . ., my be pairwise relatively prime positive integers. Let M = mmy - - - m;,
and M;=M/m;for j=1,2,..., k. Show that

A’I]G]"‘Mzﬂz'f‘ s +Mkak

runs through a complete system of residues modulo M when aj, a,, . . ., a ton through
conplete systems of residues modulo ny, my, . . ., my, respectively,

30. Explain how to find the sum # -+ v from the least positive residue of 1 + v moduto m,
where i and v are positive integers less than m. (Hint: Assume that i < v, and consider
separately the cases where the least positive residue of i + v is less than #, and where it
is greater than v.)

31. On a computer with word size w, multiplication modulo n where n < w/2 can be
performed as outlined, Let T = [\/n + 1/2], and ¢ = T2 — n. For each computation,
show that all the required computer arithmetic can be done without exceeding the word
size. (This method was described by Head [He80]).

a) Showthat [7[<T.
b) Show that if x and y are nonnegative integers less than », then

x=alT +b, y=cT+4d,

where a, b, ¢, and  are integers such that 0 <a <T,0<b<T,0<c¢<T, and
0<d<T.

¢} Let z = ad + be (mod n), such that O < z < n. Show that
xy =act + zT + bd (mod n).
d) Letac =eT + f, where e and f are integers with0 <e < T and 0 < f < T. Show
that
xy=(z+e)T + ft + bd (mod n).

e) Let v =z 4+ et {mod »), such that 0 < v < n. Show that we can write
v=gT + 5,
where g and /t are infegers with 0 < g < T,0 < h < T, and such that
xy=hT 4 (f + g)r + bd (mod ).

f) Show that the right-hand side of the congruence of part (e) can be computed without
exceeding the word size, by first finding j such that

J=({f+gh (modnm)
and 0 < j < n, and then finding k such that
k= j+ bd (mod n}
and 0 <k < n, so that
xy = hT + k (mod n).
This gives the desired result.

32. Develop an algorithm for modular exponentiation from the base 3 expansion of the
expornent,
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33.

34.

* 35.

36.
37,

# 38,

* 39.

Find the least positive residue of each of the following.

a) 310 modulo 11

b) 212 medulo 13

¢) 518 modulo 17

d) 3% modulo 23

e) Can you propose a theorem from the above congruences?

Find the least positive residues of each of the following.

a) 6! modulo 7

B 10! modulo 11

¢) 12! modulo 13

d) 16! modulo 17

e) Can you propose a theorem from the above congruences?

Show that for every positive integer m there are infinitely many Fibonacci numbers f,
such that m divides f,. (Hint: Show that the sequence of least positive residues modulo
m of the Fibonacci numbers is a repeating sequence.)

Prove Theorem 4.7 using mathematicat induction,

Show that the least nonnegative residue modulo m of the product of two positive integers
less than m can be computed using O (log? m) bit operations.

Five men and a monkey are shipwrecked on an island. The men have collected a pile of
coconuts which they plan to divide equally among themselves the next morning. Not
trusting the other men, one of the group wakes up during the night and divides the
coconuts into five equal parts with one left over, which he gives to the monkey. He then
hides his portion of the pile, During the night, each of the other four men does exactly the
same thing by dividing the pile he finds into five equal parts leaving one coconut for the
monkey and hiding his portion. In the morning, the men gather and split the remaining
pile of coconuts into five parts and one is left over for the monkey. What is the minimum
number of coconuts the men could have collected for their original pile?

Answer the question in Exercise 38, where instead of five men and one monkey, there
are n men and k monkeys, and at each stage the monkeys receive one coconut each.

We say that the polynomials f(x) and g(x) are congruent modulo n as polynomials if for
each power of x the coefficients of that power in f (x) and g (¥} are congruent modulo . For
example, 11x* + x% 4+ 2 and x> — 4x? + 5x + 22 are congruent as polynomials modulo 5.
The notation f{x) = g{x) (mod n) is often used to denote that f(x) and g{x) are congruent
as polynomials modulo #, In Exercises 4044 assume that » is a positive integer withn > 1
and that all polynomials have integer coefficients.

40,

41.

a) Show that if f(x) and g(x) are congruent as polynomials modulo #, then for every
integer a, f(a) = gla) (mod n).

b) Show that it is not necessarily true that f(x) and g(x) are congruent as polynomials
modulo n if f{a) = g{a) (mod n) for every integer a.

Show thatif f,(x) and g{(x) are congruent as polynomials modulo n and f,(x) and g,(x)
are congruent as polynomials modulo s, then

a) (fi+ f)(x) and (g; + go){x) are congruent as polynomials modulo 7.

b) {fif2)(x) and (g1g7)(x) are congruent as polynomials medulo ».
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42. Show thatif f{x) is a polynomial with integer coefficients and f{a) =0 (mod »), then
there is a polynomial g(x) with integer coefficients such that Flx)yand (x — a)g(x) are
congruent as polynomials modulo ».

43. Suppose that p is prime, f(x) is a polynomial with integer coefficients, ay, a,, .. ., a;
are incongruent integers modulo p, and f{a ) =0(mod p) for j =1,2,. .., k. Show
that there exists a polynomial g{x) with integer coefficients such that f{x) and
(x —a}x —ag) -+ - (x — a;)g(x) are congruent as polynomials modulo 2

44. Use Exercise 43 to show that if p is a prime, f(x) is a polynomial with integer co-
efficients, and x7 is the largest power of x with a coefficient divisible by p, then the
congruence f{x) = 0 (mod p) has at most p incongruent solutions modulo p.

Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Compute the least positive residue modulo 10,403 of 765159,
2. Compute the least positive residue modulo 10,403 of 765120,

Programming Projects

Write programs using Maple, Mathematica, or a language of your choice to do the following.
1. Find the least nonnegative residue of an integer with respect to a fixed modulus.

2. Perform modular addition and subtraction when the modulus is less than half of the word
size of the coinputer.

3. Perform modular multiptication when the modulus is less than half of the word size of
the computer, using Exercise 31,

4, Perform modular e\ponentiation using the alg'orithm described in the text,

Linear Congruences
A congruence of the form
ax = b {mod m),

where x is an unknown integer, is called a linear congruence in one variable. In this
section, we will see that the study of such congruences is similar to the study of linear
diophantine equations in two variables.

We first note that if x = x; is a solution of the congruence ax = b (mod m), and if
*; = Xp {mod ), then ax; = axy = b (mod m), so that x| is also a solution. Hence, if
one member of a congruence class modulo m is a solution, then all members of this class
are solutions. Therefore, we may ask how many of the m congruence classes modulo
m give solutions; this is exactly the same as asking how many incongruent solutions
there are modulo m. The following theorem tells us when a linear congruence in omne
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variable has solutions, and if it does, tells exactly how many incongruent solutions there
are modulo m.

Theoremd.10. Leta, b, andm beintegers suchthatm > Oand {a,m) =d.Ifd f b, then
ax = b (mod m) hasno solutions. If d | b, then ax = b (mod /) hasexactly d incongruent
solutions modulo m.

Proof By Theorem 4.1, the linear congruence ax = b (mod m) is equivalent to the
linear diophantine equation in two variables ax — my = b. The integer x is a solution of
ax = b (mod m) if and only if there is an integer y such that ax — my = b. By Theorem
3.23, we know that if 4 } b, there are no solutions, whereas if d | b, ax — my = b has
infinitely many solutions, given by

x=xg+ (nfd), y=yo+(ajdi,

where x = xp and y = yg is a particular solution of the equation. The values of x given
above,

x =xg-+ {m/d)y,
are the solutions of the linear congruence; there are infinitely many of these.

To determine how many incongruent solutions there are, we find the condition
that describes when two of the solutions x| = x5 + (m/d)f; and x; = xg + (m/d)t; are
congruent modulo m. If these two solutions are congruent, then

xg+ (m/d)ty = xp + (m/d)ty (mod m).
Subtracting xg from both sides of this congruence, we find that
(m/d)t; = {m/d)ty (mod m).
Now (m,m/d) =m/d since (m/d) | m, so that by Theorem 4.4, we see that
1 = 1y (mod d).

This shows that a complete set of incongruent solutions is obtained by taking x =
xq -+ (m/d)t, where ¢ ranges through a complete system of residues modulo d. One
such setis given by x =xp + (n/d)t, wheret =0,1,2,...,d — L ]

A linear congruence where the multiplier ¢ and the modulus m are relatively prime
has a unique solution, as Corollary 4.10.1 shows.
Corollary 4.10.1, Tf ¢ and m are relatively prime integers with m > 0 and b is an

integer, then the linear congruence ax = b (mod m) has a unique solution modulo .

Proof. Because {a,m) = |, we know that {a,m) | &. Consequently, by Theorem 4.10, it
follows that the congruence ax = b (mod m) has exactly (a, m) = lincongruent solution
modulo m. ]

‘We now iHustrate the use of Theorem 4.10.
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Example 4.12. To find all solutions of 9x = 12 (mod 15), we first note that since
{9, 15) = 3 and 3 ( 12, there are exactly three incongruent solutions, We can find these
solutions by first finding a particular solution and then adding the appropriate multiples
of 15/3 =5, '

To find a particular solution, we consider the linear diophantine equation 9x — 15y =
12. The Euclidean algorithm shows that

i5=9-1+6
G=6.-1+3
6=3.2,

sothat3=9-6-1=9—-(15-9-1)=9.2 — 15, Hence, 9-8 —15.4=12, and a
particular solution of 9x — 15y = 12 is given by x; = 8 and yo =4

From the proof of Theorem 4.10, we see that a complete set of three incongruent
solutions is given by x = xy = 8§ (mod 15), x = X+35=13(mod 15), and x = x, + 5 -
2=18=3{mod 15). <

Modular Inverses  We now consider congruences of the special form ax = 1 {mod m).
By Theorem 4.10, there is a solution to this congruence if and only if {a,m) =1, and
then all solutions are congruent modulo m.

Definition. Given an integer g with (@, m) = 1, a solution of gx = 1 (mod m) is called
an fnverse of a modulo m.

Example 4.13. Because the solutions of 7x = 1 (mod 31) satisfy x =9 (mod 31), 9,
and all integers congruent to 9 modulo 31, are inverses of 7 modulo 31. Analogously,
since 9 - 7= 1 (mod 31), 7 is an inverse of 9 modulo 31, -«

When we have an inverse of @ modulo »1, we can use it to solve any congruence
of the form ax = b (mod m). To see this, let & be an inverse of ¢ modulo n1, so that
aa = | (mod m). Then, if ax = b (mod m), we can multiply both sides of this congruence
by 4 to find that a(ax) = @b (mod m), so that x = ab (mod m).

Example 4.14. To find the solutions of 7x = 22 (mod 31), we multiply both sides of
this congruence by 9, an inverse of 7 modulo 31, to obtain 9 - Tx = 0. 22 {mod 31).
Hence, x =198 = 12 (mod 31). -«

Example4.15. To find all solutions of 7x = 4 (mod 12), we note that since (7,12) =1,
there is a unique solution modulo 12. To find this, we need only obtain a solution of the
linear diophantine equation 7x — 12y = 4. The Euclidean algorithm gives

12=7-145
T=5-142
5=2.2+1

2=1.2,
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Hence, 1=5—-2-2=5—-(7—5-1)-2=5.3-2.7=(12-7-1)-3-2-7=
12 .3 — 5. 7. Therefore, a particular solution to the linear diophantine equation is
xp = —20 and yo = 12. Hence, all solutions of the lincar congruences are given by
x=—20=4 (mod 12). «

Later we will want to know which integers are their own inverses modulo p, where
p is prime. The following theorem tells us which integers have this property.

Theorem 4.11. Let p be prime. The positive integer a is its own inverse modulo p if
and only if 2 = 1 (mod p) or 2 = —1 (inod p).

Proof. Ifa=1(mod p) ora = —1(mod p), then a® =1 (mod p), so that a is its own

inverse modulo p.

Conversely, if @ is its own inverse modulo p, then a’=a - a = Hmod p). Hence,
pl(@®--1).Since a® — 1=(a — D(a + D), either p | (a — 1) or p | (a + 1). Therefore,
either a = 1 {mod p) or a = —1 (mod p). |

4.2 Exercises

1. Find all solutions of each of the following linear congruences.

a) 2x =5 (mod 7) d) 9x = 5 (mod 25)
b) 3x = 6 {(mod 9) e) 103x = 444 (mod 999)
¢) 19x = 30 (mod 40) £) 980x = 1500 (mod 1600}
2. Find all solutions of each of the following linear congruences.
a) 3x =2 (mod 7) d) 15x =9 (mod 25)
b) 6x =3 (mod 9) e) 128x = 833 (mod 1001}
c) 17x = 14 (mod 21) £) 987x = 610 {mod 1597)

3, Find all solutions to the congruence §,789,783x = 2,474,010 (mod 28,927,591).

4. Suppose that p is prime and that @ and b are positive integers with (p,a)=1 The
following method can be used to solve the linear congruence ax = b (mod p).
a) Show that if the integer x is a solution of ax = b {mod p), then x is also a solution
of the linear congruence

awx = —b[m/a]l (mod p},

where a, is the least positive residue of p medulo a. Note that this congruence isof
the same type as the original congruence, with a positive integer smaller than a as
the coefficient of x,

b) When the procedure of part (a) is iterated, one obtains a sequence of linear con-
gruences with coefficients of x equal to ag =a > @, > a > + - - . Show that thersisa
positive integer n with a,, = 1, so that at the nth stage, one obtains a linear congruence
x = B (mod p).

¢) Use the method described in part (b) to solve the linear congruence 6x =7 (mod 23).
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- An astronomer knows that a satellite orbits the Earth in a period that is an exact multiple

of 1 hour that is less than 1 day. If the astronomer notes that the satellite completes 11
orbits in an interval that starts when a 24-hour clock reads (0 hours and ends when the
clock reads 17 hours, how long is the orbital period of the satellite?

. For which integers ¢, 0 < ¢ < 30, does the congruence 12x = ¢ (mod 30) have solutions?

When there are solutions, how many incongruent solutions are there?

. For which integers ¢, 0 < ¢ < 1001, does the congruence 154x = ¢ (mod 1001) have

solutions? When there are solutions, how many incongruent solutions are there?

. Find an inverse moduio 13 of each of the following integers,

ay?2 )5
b) 3 a1

. Find an inverse modulo 17 of each of the following integers.

a) 4 c}7
b5 d) 16

a} Determine which integers a, where 1 < a < 14, have an inverse modulo 14,
b) Find the inverse of each of the integers from part (a) that have an inverse modulo 14.

a) Determine which integers a, where 1 < g < 30, have an inverse modulo 30.
b) Find the inverse of each of the integers from part (a) that have an inverse modulo 30.

Show that if & is an inverse of @ modulo m and b is an inverse of b modulo m, then 7 b
is an inverse of ab modulo m.

Show that the linear congruence in two variables ax - by = ¢ (nod m), where 4, b, c,
and m are integers, m > 0, with d = {a, b, m), has exactly dm incongruent solutions if
d | ¢, and no solutions otherwise.

Find alt solutions of each of the following linear congruences in two variables,

a)2x +3y=1(mod 7) ¢} 6x 4+ 3y =0 (mod 9)
b) 2x + 4y =6 (mod 8) d) 10x + 5y =9 (mod 15)

Let p be an odd prime and £ a positive integer. Show that the congruence x? == 1 (mod )
has exactly two incongruent solutions, namely x = 41 (mod pf),

Show that the congruence x? = 1 (mod 2%) has exactly four incongruent solutions,
namely x = =1 or (1 4+ 2571y (mod 2%), when k > 2. Show that when & = 1 there
is one solution and that when k = 2 there are two incongruent solutions.

Show that if @ and m are relatively prime positive integers such that & < m, then an
inverse of @ modulo m can be found using O (log® m) bit operations.

Show that if p is an odd prime and a is a positive integer not divisible by p, then the
congruence x2 = a (mod p) has either no solution or exactly two incongnient solutions.
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Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Find the solutions of 123,456,789x = 9,876,543,210 (mod 10,000,000,001).
2. Find the solutions of 333,333,333x = 87,543,211,376 (mod 967,454,302,211),
3. Find the inverses of 734,342; 499,999; and 1,000,001 modulo 1,533,331.

Programming Projects
Wiite programs using Maple, Mathematica, or a language of your choice to do the following.
. Solve linear congruences using the method given in the text,

. Solve linear congruences using the method given in Exercise 4.

1
2
3, Find inverses modulo m of integers relatively prime to m, where »t is a positive integer.
4. Solve linear congruences using inverses.

5

. Solve linear congruences in two variables.

The Chinese Remainder Theorem

In this and in the following section, we discuss systems of simultaneous congruences,
We will study two types of such systems: In the first type, there are two or more linear
congruences in one variable, with different moduli. The second type consists of more
than one simultaneous congruence in more than one variable, where all congruences
have the same modulus,

First, we consider systems of congruences that involve only one unknown, but
different moduli. Such systems arose in ancient Chinese puzzles such as the following
problem, which appears in Master Sun’s Mathematical Manual, written late in the third
century €.E.. Find a number that leaves a remainder of 1 when divided by 3, a remainder
of 2 when divided by 5, and a remainder of 3 when divided by 7. This puzzle leads to
the following system of congruences:

x = 1(mod 3), x =2 (mod 5), x =3 {mod 7).

Problems involving systems of congruences occur in the writings of the Greek
mathematician Nicomachus in the first century. They also can be found in the works of
Brahmagupta in India in the seventh century. However, it was not until the year 1247 that
a general method for solving systems of linear congruences was published by Ch’in Chir-
Shao in his Mathematical Treatise in Nine Sections. We now present the main theorem
concerning the solution of systems of linear congruences in one unknown. This theorem
is called the Chinese remainder theorem, most likely because of the contributions of
Chinese mathematicians such as Ch’in Chiu-Shao to its solution. (For more information
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about the history of the Chinese remainder theorem, consult [Ne69), fLiDu87], [Li73],
and [Ka98],)

Theorem 4.12, The Chinese Remainder Theorem. Letmy, my, . . ., m, be pairwise
relatively prime positive integers, Then the system of congruences

X =ay (mod my),

X =gy (mod m,),

x =a, (mod m,),
has a unique solution modulo M = m Ry ., LH.

Proof. First, we construct a simultaneous solution to the system of congruences, To
do this, let M; = M/m; TNy e M My - - m,. We know that (M, my) = 1 by
Exercise 14 of Section 3.3, because (m,my) = 1 whenever j # k. Hence, by Theorem
4.10 we can find an inverse y, of My, modulo my, so that Myy, = 1 (mod my). We now
form the sum

r=aMyy ta Moy, & - +a, M, y,.

The integer x is a simultancous solution of the r congruences. To demonstrate this,
we must show that x = a; (mod m;) for k = L,2,...,r Sincem; | M ; Whenever j #
k, we have M 7 =0 (mod m,). Therefore, in the sum for x, all terms except the kth
term are congruent to 0 (mod m1;). Hence, ¢ = apMyy; = ay (mod my), since My =
1 (mod m;). We now show that any two solutions are congruent modulo M. Let X
and x; both be simultaneous solutions to the system of r congruences. Then, for each

CH’IN CHIU-SHAQ {1202-1261) was boin in the Chinese province of Sichuan, He
studied astronomy at Hangzhou, the capital of the Song dynasty. He spent ten years in
dangerous and difficult conditions at the frontier, where battles with the Mongols under
Genghis Khan were under way. He wrote that he was instructed in mathematics by a “recluse
scholar” During his time at the frontier, he investigated mathematical problems. He selected
81 of these, divided them into nine classes, and described them in his baok Mathematical
Treatise in Nine Sections. This book covers systems of linear congruences, the Chinese
temainder theorem, algebraic equations, areas of geometrical figures, systems of linear
equations, and other topics.

Ch’in Chiu-Shao was considered to be a mathematical genius and was talented in
architecture, music, and poetry, as well as in many sports, including archery, fencing, and
horsemanship. He held several different positions in government, but was relieved of his
duties many times because of corruption. He was considered to be extravagant, boastful, and
obsessed with his own advancement. He managed to amass great wealth and through deceit
had an immense house constructed at a magnificent site. The back of this house contained
a serfes of rooms for lodging female musicians and singers, Ch’in Chiu-Shao developed a
notorious reputation in love affairs.




160

Congruences

k, xg=x; = a; (mod my), so that my | (xg — x;). Using Theorem 4.8, we see that
M | (xg — x). Therefore, xo = x; (mod M). This shows that the simultaneous solution
of the system of r congruences is unique modulo M. n

We illustrate the use of the Chinese remainder theorem by solving the system that
arises from the ancient Chinese puzzle, '

Example 4.16. To solve the system

x =1{mod3)
x =2 (mod3)
x=3{(mod7),

wehave M =3-5-7= 105, M, = 105/3 =35, M, = 105/5=21,and M3 = 105/7=15.
To determine y;, we solve 35y = 1 (mod 3), or equivalently, 2y, = 1 {mod 3). This yields
yy =2 (mod 3). We find y, by solving 21y, = 1 (mod 5); this immediately gives y, =
1 (mod 5). Finally, we find y; by solving 15y; = 1 (inod 7). This gives y3=1 {rmod 7}.
Hence,
x=1-35-2+4+2-21-143-15-1
= 157 = 52 (mod 105).

We can check that x satisfies this system of congruences whenever x = 52 (mod 105) by
noting that 52 = 1 (mod 3), 52 =2 (mod 5), and 52 =3 (mod 7). «

There is also an iterative method for solving simultaneous systems of congruences.
We iltustrate this method with an example.

Example 4.17. Suppose we wish (o solve the system

x == 1(mod 5)
x=2(mod 6)
x =3 {mod 7}.

We use Theorem 4.1 to rewrite the first congruence as an equality, namely x =5t + 1,
where ¢ is an integer, Inserting this expression for x into the second congruence, we find
that

5f + 1=2 (mod 6),

which can easily be solved to show that 7 = 5 (mod 6). Using Theorem 4.1 again, we
write ¢ = &u + 5, where u is an integer. Hence, x = 5(6u + 5} + 1=30u + 26. When
we insert this expression for x into the third congruence, we obtain

30u + 26 =3 (mod 7).

When this congruence is solved, we find that 1 = 6 (mod 7). Consequently, Theorem 4.1
tells us that u = 7v + 6, where v is an integer. Hence,

x=30(7Tv + 6) + 26 = 210v 4 206.
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Translating this equality into a congruence, we find that
x =200 (mod 210),

and this is the simultaneous solution. -«{

Note that the method we have just illustrated shows that a system of simultaneous
questions can be solved by successively solving linear congruences. This can be done
even when the moduli of the congruences are not relatively prime as long as congruences
are consistent (see Exercises 15-20 at the end of this section).

Computer Arithmetic Using the Chinese Remainder Theorem The Chinese remain-
der theorem provides a way to perform computer atithmetic with large integers. To store
very large integers and do arithmetic with them requires special techniques. The Chinese

remainder theorem tells us that given pairwise relatively prime modulimy, m,, . . . ,m,,
a positive integer n such that n < M =m My« + -, is uniquely determined by its least
positive residues modulo m jforj=1,2,...,r. Suppose that the word size of a com-

puter is only 100, but that we wish to do arithmetic with integers as large as 10, First,
we find pairwise relatively prime integers less than 100 with a product exceeding 105;
for instance, we can take m; = 99, my =98, my =97, and m4 = 95. We convert inte-
gers less than 108 into 4-tuples consistin g of their least positive residues modulo miy, ny,
my, and my. (To convert integers as large as 106 into their list of least positive residues,
we need to work with large integers using multiprecision techniques, However, this is
done only once for each integer in the input and once for the output.) Then, for instance,
to add integers, we simply add their respective least positive residues modulo 4, m,,
mg, and my, making use of the fact that if x = ¥; (mod m;) and y = y; (mod m;), then
X +y =X+ y; (mod m;). We then use the Chinese remainder theorem to convert the
set of four least positive residues for the sum back to an integer,

The following example illustrates this technigue,

Example 4.18. We wish to add x = 123,684 and y == 413,456 on a computer of word
size 100. We have

¥ =33{mod 99) y=32 (mod99),
x= 8{mod98) y=92(mod98),
¥= 9(mod97) y=42(mod97),
x =89 (mod 95) y =16 (mod 95),
50 that
x + y =65 (mod 99),
x+y= 2 (mod98),
x 4+ y =51 (mod 97),
x +y =10 (mod 95).
We now use the Chinese remainder theorem to find x + y modulo 99 .98 .97 .95,

We have M =99 - 98 .97 . 95 = 89,403,930, M) = M/99 = 903,070, My = M/98 =
912,285, M3 = M/97 = 921,690, and My = M/95 = 941,094. We need to find the
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inverse of M; (mod y;) fori = 1,2, 3, 4. To do this, we solve the following congruences
(using the Euclidean algorithm}:
903,070y, = 91y, = 1 (nod 99),
912,285y, = 3y, =1(mod 98),
921,690y, = 93y; = 1 (mod 97),
041,094y, = 24y, = 1 (mod 95).
We find that y; = 37 (mod 99), y, =35(mod 98}, ¥3= 24 (mod 97), and Y4 = 4
{mod 95). Hence,
x + y=65-903,070-37 + 2.012,285 - 33+ 51- 921,690 - 24 4+ 10 - 941,094 - 4
=13,397,886,480
= 537,140 (mod 89,403,930}

Since<x+y< 89,403,930, we conclude that x + y = 537,140. -«

On most computers, the word size is a large power of 2, with 235 3 common value.
Hence, to use modular arithmetic and the Chinese remainder theorem to do computer
arithmetic, we need integers less than 235 that are pairwise relatively prime and that
multiply together to give a large integer. To find such integers, we use numbers of the
form 2™ — 1, where m is a positive integer. Computer arithmetic with these numbers
turns out to be relatively simple {(see [Kn97]). To produce a set of pairwise relatively
prime numbers of this form, we first prove two lemmas.

Lemma 4.2, Ifq and b are positive integers, then the least positive residue of 2% — 1
modulo 22 — 1is 2" — 1, where v is the least positive residue of @ modulo b,

Proof. From the division algorithm, @ = bg +r, where r is the least positive residue
of ¢ modulo b, We have 29 — 1=229% — 1= @b — P 22D
(27 — 1), which shows that the remainder when 29 — 1 is divided by 2b _ 14g 27 — 1; this
is the least positive residue of 29 — 1 modulo 2k -1 =

We use Lemma 4.2 to prove the following result.

Lemmad.3, If o andb are positive integers, then the greatest common divisor of 2 —1
and 2¢ — 1is 2@%) — 1

Proof. When we perform the Buclidean algorithm with a =7g and b = ry, we obtain

ro =rdith O0<rp<n
ri :r2q2+r3 0§?‘3<F2
Fp_3 = Fy—2qn-2 T a1 O0=<rp 1 <<rp2

Fpg = 'p-14n-1

where the last remainder, r,_, is the greatest COMMOn divisor of @ and b.
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Using Lemma 4.2, and the steps of the Euclidean algorithm witha =rg and b =ry,
when we perform the Euclidean algorithm on the pair 2° — 1= Ryand 22 — 1 = Ry, we

obtain
R(} =R1Q1+_R2 R2 :27’2__.1
RI = R2Q2+R3 R3 ,,__2?3_ 1
Ry 3 =Ry 20, 2+ Ry Ry =211

Ry = Ry 1Qp 1

Here, the last nonzero remainder, R, _; =271 — 1 =204 _ 1 is the greatest common
divisor of Ry and R . L]

Using Lemma 4.3, we have the following theorem.

Theoremd.13. The positive integers 2° ~ 1and 2% — 1 are relatively prime if and only
if a and b are relatively prime.

We can now use Theorem 4.13 to produce a set of pairwise relatively prime integers,
each of which is less than 2%, with product greater than a specified integer. Suppose
that we wish to do arithmetic with integers as large as 2'%%, We pick m, =235 — |,
my=2%—1,my=2%— 1, my =23 — 1, my=22 — 1, and mg = 22 — 1. Since the
exponents of 2 in the expressions for the m ; are pairwise relatively prime, by Theorem
4.13, the m ; are pairwise relatively prime. Also, we have M = mymomymgm sing > 2184,
We can now use modular arithmetic and the Chinese remainder theorem to perform
arithmetic with integers as large as 2184,

Although it is somewhat awkward to do computer operations with large integers
using modular arithmetic and the Chinese remainder theorem, there are some definite
advantages to this approach. First, on many high-speed computers, operations can be
performed simultaneously. So, reducing an operation involving two large integers to a
set of operations involving smaller integers, namely the least positive residues of the large
integers with respect to the various moduli, leads to simultaneous computations which
may be performed more rapidly than one operation with large integers, especially when
parallel processing is used. Second, even without taking into account the advantages of
simultaneous computations, multiplication of large integers may be done faster nsing
these ideas than with many other multiprecision methods. The interested reader should
consult Knuth [Kn97].

4.3 Exercises

1. Which integers leave a remainder of 1 when divided by both 2 and 3?

2, Find an integer that leaves a remainder of 1 when divided by either 2 or 5, but that is
divisible by 3,

3. Find an integer that leaves a remainder of 2 when divided by either 3 or 5, but that is
divisible by 4.
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10.

11

12.

13.

# 14,

. Find all the solutions of each of the following systems of linear congruences.

a) x=4(mod 11) ¢} x=0(mod2) d) x =2 (mod 11)
x=3(mod 17} x =0 (mod 3) x =3 {mod 12)
x = | (mod 5) x =4 (mod 13)
b) x=1{mod?2) x=6(mod7) x=5(mod 17}
x =2 (mod 3) x = 6 {mod 19}

x =3 (mod 5)

. Find all the solutions to the system of linear congruences x = 1 {(mod 2), x = 2 {mod 3},

x =3 (mod 5), x =4 (mod 7), and x =5 (mod 11).

. Find all the solutions to the system of linear congruences x = 1 (mod 999), x =

2 (mod 1001), x =3 (mod 1003), x =4 {mod 1004), and x = 5 (mod 1007).

. Atroop of 17 monkeys store their bananas in 11 piles of equal size, each containing more

than  banana, with a twelfth pile of 6 left over. When they divide the bananas into 17
equal groups, none remain, What is the smallest number of bananas they can have?

. As an odometer check, a special counter measures the miles a car travels modulo 7.

Explain how this counter can be used to determine whether the car has been driven
49,335: 149,335: or 249,335 miles when the adometer reads 49,335 and works modulo
100,000.

. Chinese generals counted troops remaining after a battle by lining them up in rows of

different lengths, counting the number left over each time, and calculating the total from
these remainders, If a general had 1200 troops at the start of a battle and if there were 3
teft over when they lined up 5 at a time, 3 left over when they lined up 6 at a time, 1 left
over when they lined up 7 at a time, and none left over when they lined up 11 at a time,
how many troops remained after the battle?

Find an integer that leaves a remainder of 9 when it is divided by either 10 or 11, but that
is divisible by 13.

Find a multiple of 11 that leaves a remainder of 1 when divided by each of the integers
2,3,5,and 7.

Solve the following ancient Indian problem: If eggs are removed from a basket 2, 3, 4,
5, and 6 at a time, there remain, respectively, ¥, 2, 3, 4, and 5 eggs. But if the eggs are
removed 7 at a time, no eggs Temain. What is the least number of eggs that could have
been in the basket?

Show that there are arbitrarily long strings of consecutive integers each divisible by a
perfect square greater than 1. (Hint: Use the Chinese remainder theorem to show that
there is a simultaneous solution to the system of congruences x =0 (mod 4), x = -1
(mod 9), x = —2 (mod 25), . . ., x = —k + 1 (mod p?), where py is the kth prime.)

Show that if a, b, and ¢ are integers such that (g, b) = 1, then there is an integer n such
that (an + b,c)y = 1.

In Exercises 15-18, we will consider systems of congruences where the moduli of the
congruences are not necessarily relatively prime.
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15. Show that the system of congruences
- X =a) (mod my)
x = ay (mod my)

has a solution if and only i (m;, My} | (a1 — a). Show that when there is a solution, it
is unique modulo [my, m,]. (Hinz: Write the first congruence as x = gy + km, where k
is an integer, and then insert this expression for x into the second congruence.)

16. Using Exercise 15, solve each of the tollowing simultaneous systems of congruences.

2} x =4 (mod 6) b) x =7 (mod 10)
x =13 (mod 15) x =4 (mod 15)

17, Using Exercise 15, solve each of the following simultancous systems of congruences.

a) x = 10 (mod 60) by x =2 {mod 910)
x = 80 (mod 350} x = 93 (mod 1001)

18. Does the system of congruences x = 1 (mod 8), x = 3(mod 9), and x = 2 {mod 12) have
any simultaneous solutions?

What happens when the moduli in a simultaneous system of more than two congruences
in one unknown are not pairwise relatively prime (such as in Exercise 1837 The following
exercise provides compatability conditions for there tobe a unique solution of such a system,
modulo the least common multiple of the moduli.

19. Show that the system of congruences
x = ay {mod my)

X = a, (mod my)

x=a, (modm,)

has a solation if and only if (m;, m 1 (a; — ay) for all pairs of integers (7, j), where
=i« j<r. Show thatif a solution exists, then it is unique modulo fmy,ma,.. . ,m]
(Hint: Use Exercise 15 and mathematical induction,)

20. Using Exercise 19, solve each of the following systems of congruences,

a) x=5(mod6) d) x=2(mod &)
x =3 (mod 10} x =4 (mod 8)
x =8 (mod 13) x =2 (mod 14)

x = 14 (mod 15}
b) x =2 (mod 14)

x =16 (mod 2) e) x=7(mod9)
x = 10 (mod 30) x =2 (mod 10}
x=3{mod 12)
c) x=2 (nod9) x =6 (mod 15)
x =8 (mod 15)

x = 14 (mod 25)
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21,

22.

23.

24,

What is the smallest number of lobsters in a tank if 1 lobster is left over when they are
removed 2, 3, 5, or 7 at a time, but no lobsters are left over when they are removed 11 at
a time?

An ancient Chinese problem asks for the least number of gold coins a band of 17 pirates
could have stolen. The problem states that when the pirates divided the ceins into equal
piles, 3 coins were left over. When they fought over who sheuld get the extra coins, one
of the pirates was slain. When the remaining pirates divided the coins into equal piles, 10
coins were left over, When the pirates fought again over who should get the extra coins,
another pirate was siain. When they divided the coins in equal piles again, no coins were
left over. What is the answer to this problem?

Solve the following problem originally posed by Cl’in Chiu-Shao (using different weight
units). Three farmers equally divide a quantity of rice with a weight that is an integrat
number of pounds, The farmers each sell their rice, selling as much as possible, at three
different markets where the markets use weights of 83 pounds, 110 pounds, and 135
pounds, and only buy rice in multiples of these weights. What is the least amount of rice
the farmers could have divided if the farmers return home with 32 pounds, 70 pounds,
and 30 pounds, respectively?

Using the Chinese remainder theorem, explain how to add and how to multiply 784 and
813 on a computer of word size 100.

A positive integer x # 1 with n base b digits is called an autontorph to the base b if the last
n base b digits of x? are the same as those of x.

= 25, Find the base 10 automorphs with four digits (with initial zeros allowed).

% 26. How many base b automorphs are there with n or fewer base b digits, if b has prime-power

factorization b = pi"pgz e Pﬁk?

.@ According to the theory of biorhiythms, there are three cycles in your life that start the day

28.

29.

you are born. These are the physical, emotional, and intellectual cycles, of lengths 23, 28, and
33 days, respectively. Fach cycle follows a sine curve with period equal to the length of that
cycle, starting with value 0, climbing to value 1 one-quarter of the way through the cycle,
dropping back to value 0 one-half of the way through the cycle, dropping further to value —1
three-guarters of the way through the cycle, and climbing back to value 0 at the end of the
cycle.

Answer the following questions about biorhythms, measuring time in quarter days (so that
the units will be integers).

27.

For which days of your life will you be at & triple peak, where all of your three cycles
are at maximum values?

For which days of your life will you be at a triple nadir, where all three of your cycles
have minimum values?

When in your life will all three cycles be at a neutral position (value 0)7

A set of congruences to distinet moduli greater than | that has the property that every integer
satisfies at least one of the congruences is called a covering sef of congruences.

30.

Show that the set of congruences x =0 (mod 2), x =0(mod 3), x = 1 (mod 4), x =
1{mod 6), and x = 11 (mod 12} is a covering set of congruences.
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* 32,

33.

34.

35,

* 36,
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Show that the set of congruences x = 0 (mod 2), x =0(meod 3), x =0{mod 5), x =
0 (mod 7), x =1(mod 6), x =1 (mod 10), x =1 (mod 14), x =2 (mod 15), x =
2 (mod 21), x =23 (mod 30}, x =4 (mod 35), x =5 {mod 42), x = 59 (mod 70), and
x = 104 (mod 105) is a covering set of congruences.

Letm be a positive integer with prime-power factorization g = 2% Pripyt - -+ pr. Show

that the congruence x% = 1 (mod m} has exactly 27t solutions, where ¢ = 0 if ag=0or
Le=1ifay=2,and e =2 if ag > 2. (Hint: Use Exercises 15 and 16 of Section 42)

The three children in a family have feet that are 5 inches, 7 inches, and 9 inches fong.
When they measure the length of the dining room of their house using their feet, they
each find that there are 3 inches left over. How long is the dining room?

Find all solutions of the congruence x? - 6x — 31 =0 (mod 72). (Hint: First note that
72 =233 Find, by trial and error, the solutions of this congruence modulo & and modulo
9. Then apply the Chinese remainder theorem.)

Find all solutions of the congruence x? + 18x — 823 =0 (mod 1800). (Hint: First note
that 1800 = 233252, Find, by trial and error, the solutions of this congruence modulo 8,
modulo 9, and modulo 25. Then apply the Chinese remainder theorem.)

Give a positive integer R, a prime p that is the only prime between p — R and p + R,
including the end points, is called R-reclusive, Show that for every positive integer R,
there are infinitely many R-reclusive primes. (Hint: Use the Chinese remainder theorem
to find an integer x such that x — j is divisible by p; and x + j is divisible by p Rjo
where p; is the kth prime. Then invoke Dirichlet’s theorem on primes in arithmetic
progressions.)

4.3 Computational and Programming Exercises

Compatations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1.

2.

3

Solve the simultancous system of congruences x = I (mod 12,341,234,567),
x =2 (mod 750,000,057}, and x = 3 (mod 1,099,51 1,627,776).

Solve the simultancous system of congruences x = 5269 (mod 40,320), x = 1248
{mod 11,111}, x = 16,645 (mod 30,003), and x = 2911 (mod 12,321).

Using Exercise 13 of this section, find a string of 100 consecutive positive integers each
divisibie by a perfect square. Can you find such a set of smatler integers?

. Find a covering set of congruences (as described in the preamble to Exercise 30) where

the smallest modulus of one of the congruences in the covering setis 3; where the smallest
modulus of one of the congruences in the covering set is G; and where the smallest
modulus of one of the congruences in the covering set is 8.

Programming Projects

Write prograins using Maple, Mathematica, or a language of your choice to do the following.

1.
2.

Solve systems of linear congruences of the type found in the Chinese remainder theorem.

Solve systems of linear congruences of the type given in Exercises 15-20.
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3. Add large integers exceeding the word size of 2 computer using the Chinese remainder
theorem.

4, Multiply large integers exceeding the word size of a computer using the Chinese remain-
der theorem.

5. Find autornorphs to the base b, where b is a positive integer greater than 1 (see the
preamble to Exercise 25).

6. Plot biorhythm charts and find triple peaks and triple nadirs (see the preamble to Exercise
27).

4.4 Solving Polynomial Congruences

This section provides a useful tool that can be used to help find solutions of congruences
of the form f(x) = 0 (mod m), where f(x) is a polynomial of degree greater than 1 with
integer coefficients. An example of such a congruence is 2x3 4+ 7x — 4 =0 (mod 200).

We first note that if m has prime-power factorization m = p|* Pyl ... py, then
solving the congruence f(x) =0 (mod m) is equivalent to finding the simultaneous
solutions to the system of congruences

fxy=0(mod pi), i=12,...,k

Once the solutions of each of the & congruences modulo pf" are known, the solutions
of the congruence modulo m can be found by the Chinese remainder theorem. This is
iNustrated in the following example.

Example 4,19. Solving the congruence
2x% 4+ 7x — 4 = 0 (mod 200)
reduces to finding the solutions of
2x> +7x — 4 =0 (mod 8)
and
2x% + Tx — 4 =0 (mod 25)

since 200 = 2352, The solutions of the congruence modulo 8 are all integers x =
4 (mod 8) (for x to be a solution x must be even; the cases where x is odd can be
quickly checked). In Example 4.20, we will see that the solutions modulo 25 are all
integers x = 16 (mod 25). When we use the Chinese remainder theorem to solve the
simultaneous congruences x = 4 (mod 8) and x = 16 (mod 25), we find that the solu-
tions are all x = 116 (mod 200) (as the reader should verify). These are solutions of
2x3 + 7x — 4 =0 (mod 200). <

We will see that there is a relatively simple way to solve polynomial congruences
modulo p*, once all solutions modulo p are known. We will show that solutions modulo
p can be used to find solutions modulo P2, solutions modulo p? can be used to find
solutions modulo p*, and so on. Before introducing the general method, we present an
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example illustrating the basic idea used to find solutions of a polynomial congruence
modulo p* from those modulo p.

Example 4.20. The solutions of
2034 7x — 4 =0 (mod 5)

are the integers with x = I (mod 5), as can be seen by testing x =0, 1, 2,3, and 4.
How can we find the solutions modulo 257 We could check all 25 different values
r=0,1,2,...,24. However, there is a more systematic method, Since any solution of

2x3 4+ 7x — 4 =0 (mod 25)

is also a solution modulo 5 and all solutions modulo 5 satisfy x = 1 (mod 5), it follows
that x = 1+ 5¢, where # is an integer. We can solve for ¢ by substituting 1+ 5¢ for x. We
obtain

2(14 5¢)> + 7(1+ 56) — 4 =0 (mod 25).
Simplifying, we obtain a linear congruence for ¢, namely
65t + 5= 15t + 5= 0 (mod 25).
By Theorem 4.4, we can eliminate a factor of 5, so that
3t 4+ 1 =0 (mod 5).

The solutions of this congruence are ¢ = 3 (mod 5). This means that the solutions modulo
25 are those x for which x =145t = 14 5 - 3= 16 (mod 25). The reader should verify
that these are indeed solutions. «

We will now introduce a general method that will help us find the solutions of
congruences modulo prime powers. In particular, we will show how the solutions of
the congruence f{x) = 0 (mod p*), where p is prime and k is a positive integer with
k > 2, can be found from those of the congruence f(x) = 0 (mod p*~1). The solutions
of the congruence modulo p* are said to be fiffed from those modulo p*~. The theorem
uses f'(x), the derivative of £, However, we will not need results from calculus, Instead,
we can define the derivative of a polynomial directly and describe the properties that we
will need.

Definition. Let f(x) =a,x" 4+ a, 1x""'+ ...+ ax + ag, where a; is a real number
for i =0,1,2,...,n. The derivative of f(x), denoted by f’(x), equals na,x" 1+
(n—Da,_x*2+..-+a,

Starting with a polynomial, we can find its derivative and then find the derivative of
its derivative, and so on. We can define the kth derivative of a polynomial f(x), denoted
by f®(x), as the derivative of the (k — 1)st derivative, that is, F® (x) = (&~ Dy (x).

We will find the following two lemmas helpful. We leave their proofs to the reader.
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Lemmad.d. If f(x) and g(x) are polynomials, then {f + £)'(x) = f'(x) + g'(x) and
(efY(x) = c(f'(x)), where ¢ is a constant. Furthermore, if k is a positive integer, then
(f + 20 = FR) + g® () and (cf)® (x) = c(F®(x)), where ¢ is a constant.

Lemma 4.5. If m and k are positive integers and f(x) = x™, then f®(x) =
mm—ND.--(m—k+ Dxmk,

We can now state the result that can be used to lift solutions of polynomial con-
gruences. It is called Hensel’s lemma after the German mathematician Kurt Hensel, who
discovered it in work leading to the invention of the field of mathematics known as p-adic
analysis.

Theorem 4.14. Hensel’s Lemma. Suppose that f(x) is a polynomial with integer
coefficients and that & is an integer with k > 2, Suppose further that r is a solution of the
congruence f{x} =0 (meod pk"l): Then,

() if f'o) & 0 (hié?p), then there is a unique integer ¢, 0 <¢ < p, such that
F(r 4 tp*¥~1 = 0 (mod p*), given by

t=—F @/ P (mad p),

where f(r} is an inverse of f'{r) modulo p; :
(i) if f(r) =0 (mod p) and £ () = 0 (mod p¥), then f(r +1p* 1) =0 (mod 25
for all integers ¢;
(i) if f'(r) =0 (mod p) and f(r) £ 0 (mod 75, then f(x) =0 (mod pk) has no
solutions with x = r (mod p*~ 1.

In case (i), we see that a solution to f(x) =0 (mod pk*I) lifts to a unique solution of
Fx)=0 (mod p*), andin case (ii), such a sclution either lifts to p incongruent solutions
modulo p* or to none at all. ]

able to use the p-adic numbers to prove many results in number theory, and these numbers have had a
major impact on the development of algebraic number theory. Hensel served as a professor at the Uni-
versity of Marburg until 1930, He was the editor for many years of the famous mathematical journal
known as Crelle’s Journal, whose official name is Journal fiir die reine und angewandte Mathematik.

KURT HENSEL (1861-1941) was born in Kénigsberg, Prussia (now Kalin-
ingrad, Russia). He studied mathematics in Berfin, and later in Bonn, under
many leading mathematicians, including Kronecker and Weierstrass, Much of
his work involved the development of arithmetic in algebraic number fields.
Hensel is best known for inventing the p-adic numbers in 1902, in work on rep-
resentations of algebraic numbers in ferms of power series. The p-adic numbers
can be thought of as a completion of the set of rational numbers that is different
from the usual completion that produces the set of real numbers. Hensel was
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We will need the following lernma about Taylor expansions for the proof of Hensel’s
lemma. :

Lemma 4.6, If f(x) is a polynomial of degree n with integer coefficients, then
Ha+b)=f@+ fl@b+ @b 21+ - + D (@) /a1,

where the coefficients (namely 1, f'(a), f"(2)/2!..., F™(a)/n!) are polynomials in a
with integer coefficients.

Progf. Every polynomial f of degree # is the sum of multiples of the functions ¥,
where m < n. Furthermore, by Lemma 4.4, we need only establish Lemma 4.6 for the
polynomials f,,(x) = x™, where m is a positive integer.

By the binomial theorem, we have
2 (m
s
j=0 M
By Lemma 4.5, we know that f}ftf) (@=mm—1---(m—j+ Da™ . Hence,

fn(.j) (@)= (n.r)am—j_
J
Because (T) is an integer for all integers m and j such that 0 < J = m, the coefficients
Sm(i)/j! are integers. This completes the proof. [
We now have all the ingredients needed to prove Hensel’s lemma,

Proof. TIf r is a solution of f(r) =0 (mod pk), then it is also a solution of f(r) =
0 (mod p*~1). Hence, it equals r + rp¥ 1 for some integer . The proof follows once we
have determined the conditions on ¢.

By Lemma 4.6, it follows that
7y (n)
S04 = f0)+ £+ T g, L0 gy,
where F®(r)/k! is an integer for k =1,2,...,n. Given that k > 2, it follows that
k<m(k—1yand p* | p™*D for 2 < < n. Hence,

Fo+ Y = 0 + £t (mod phy.

Because r +1p*~! is a solution of f(r + rp*~1) = 0 (mod P, it follows that
Fop* = —f () (mod p*).

Furthermore, we can divide this congruence by p*~%, because Fr) =0 (mod
251, When we do so and rearrange terms, we obtain a linear congruence in ¢, namely

Fye==£0)/p* (mod p).

By examining its solutions modulo p we can prove the three cases of the theorem.
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Suppose that f(r) % 0 (mod p). It follows that (f'(r), p) = L. Applymg Theorem
4.10, we see that the congruence for ¢ has a unique solution,

t=(=f)/p* ) f1r) (mod p),
where f7(r) is an inverse of f'(r) modulo p. This establishes case (i).

When f (r) =0 (mod p), we have (f(r), p) =p. By Theorem 4.10, if
plfry/ p*~1), which holds if and only if f(r) = 0 (mod p*), then all values 7 are
solutions. This means that x =r 4 tp*~! is a solntion for # =0, 1,..., p — L. This
establishes case (ii).

Finally, consider the case when f/(r) =0 (mod p), but p f (f(r) / 1y, We have
(f'(r), p) = pand f{r) # 0 (mod pk); s0, by Theorem 4.10, no values of 7 are solutions.
This completes case (iii). [ ]

The following corollary shows that we can repeatedly lift solutions, starting with a

solution modulo p, when case (i) of Hensel’s lemma applies.

Corollary 4.14.1.  Suppose that r is a solution of the polynomial congruence f{(x) =
0 (mod p), where p is a prime. If /() # 0 (mod p), then there is a unique solution ry
moedulo pk, k=2,3,...,such that .

re=r1— Fre-D S0,
where f(r) is an inverse of f'(r) modulo p.
Proof. Using the hypotheses, we see by Hensel’s lemma that r lifts toa unique sofution
ry modulo p? with ry =r + tp, where t = — f/(r)(f(r}/ p). Hence,

rp=r-— fFf{r).

Because r, = r {mod p), it follows that f oy = f'(r)#£0 (rnod ). Using Hensel’s
lemma again, we see that there is a unique solution r3 modulo p3, which can be shown
tobers=r, — f(r) F/(r). If we continue in this way, we find that the corollary follows
for all integers k > 2. x

The following examples illustrate how Hensel's lemma is applied.

Example 4.21. Find the solutions of
+2 %% 429 =0 (mod 25).

Let f{x)= 134 x2 420, We see (by inspection) that solutions of f(x) =0 (mod 5) have
x = 3 (mod 5). Because f'(x¥) =3x%+ 2x and f'(3) =33 =340 (mod 5), Hensel’s
lemma tells us that there is a unique solution modulo 25 of the form 3 + 5¢, where

t=—F3{(F(3)/5) (mod 5).

Note that f'(3) = 3 =2, because 2 is inverse to 3 modulo 5. Also note that f(3)/3=
65/5 = 13. It follows that f = —2 - 13 =4 (mod 5). We conclude thatx =3+ 5- 4=23
is the unique solution of f(x) = 0 (mod 25). -«
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Example 4,22, Find the solutions of
X+ x+7=0(mod 27).

Let f(x) =x% 4+ x + 7. We find {by inspection) that the solutions of fE)=0(mod3)
are the integers with x = | (mod 3). Because F(x)=2x + 1, we see that Fi(y =
3 =0 {mod 3). Furthermore, because J1)=9=0{mod 9), we can apply case (ii) of
Hensel's lemma to conclude that 1+ 3¢ is a solution modulo 9 for all integers ¢. This
means that the solutions modulo 9 are x =1,4,0r 7 (mod 9).

Now, by case (iii) of Hensel's lernma, because F{1) =90 (mod 27), there are no
solutions of f(x) =0 (mod 27) with x = 1 (mod 9). Because f(4) =27 =0 (mod 27),
by case (ii), 4 + 9¢ is a solution modulo 27 for all infegers ¢. This shows that all x =4, 13,
or 22 (mod 27) are solutions. Finally, by case (iii), because f(7) = 63 = 0 {mod 27),
there are no solutions of f (x) = 0 (mod 27} with x = 7 (mod 9).

Putting everything together, we see that all solutions of F{x)=0{(mod 27) are those
x=4,13, or 22 (mod 27). -«

Example 4.23.  What are the solutions of £(x) = x>+ x2 + 2x + 26 = 0 (mod 343)7
By inspection, we see that the solutions of x3+ x2 £ 2x +26=0 (mod 7} are the
integers x = 2 (mod 7). Because f/(x) =3x2 + 2x 4 2, it follows that i) =18
0 {mod 7). We can use Corollary 4.14.1 to find solutions modulo 7* for k = 2,3,....
Noting that f/(2) =4 =2, we find that ry =2 — f(2)J/(2) =2 —42 . 2 = —82 =
16 (mod 49), and r3 =16 — f(16) f'(2) = 16 — 4410 - 2 = —-8804 = 114 (mod 343). It
foltows that the solutions modulo 343 are the integers x = 114 (mod 343). «

4.4 Exercises

1. Find all the solutions of each of the following congruences.
a) xt4dx+2=0 (mod 7)
b) x? 4 4x +2 =0 (mod 49)
¢) x%+ 4x -2 = 0 (mod 343)

2. Find all the solutions of each of the following congruences.
a) x*+8x2 —x — 1=0 (mod 11)
b) x* 4 8x% — x — 1=0 (mod 121)
O +82x—1=0 (mod 133}

- Find the solutions of the congruence x2 + x 4- 47 = 0 (mod 2401). (Note that 2401 — 74
+ Find the solutions of x? + x + 34 = 0 (mod §1).

. Find all sofutions of 13x7 — 42x — 649=0 (mod 1323).

. Find all solutions of % — x* - 1001 = 0 (mod 539).

» Find all solutions of x* + 2x 4 36 = 0 (mod 4375),

. Find all solutions of x® — 2x% - 35 = 0 (mod 6125).

0 1 &N ot R W
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9, How many incongruent solutions are there to the congruence 534 x24x 1=
0 (mod 64)7

10. How many incongruent solutions are there to the congruence ¥+ x—6=0(mod
144y?

11. Let @ be an integer and p a prime such that (@, p) == 1. Use Hensel’s lemma te solve the
congruence ax = 1 (mod p*), for all positive integers k.

%12, a) Let f(x) be a polynomial with integer coefficients. Let p be a prime, k a positive
integer, and j an integer such that k = 2j+ 1 Letabea solution of f(a) =
0 (mod p*), with p/ exactly dividing f'(a). Show thatif b=« (mod p*~7), then
Fby= fa)y (mod %), pf exactly divides f'(b), and there is a unique f modalo p
such that f(a + tp*~f) =0 (mod p**1). (Hint: Using a Taylor expansion, first show
that f(a + tp* ) = f(@) +1p*7 £'(a) (mod p¥~21))
b) Show that when the hypotheses of part (a) hold, the solutions of f(x) =0 (mod o)
may be lifted to solutions of arbitrarily high powers of p.

* 13, How many solutions are there to x% 4+ x 4223 =0 (mod 3/), where j is a positive
integer? (Hint: First find the solutions modulo 3’ and then apply Exercise 12.)

4.4 Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, Or programs you have written,
carry out the following computations and explorations.

1. Find all solutions of x* — 13x3 + 11x — 3=0 (mod 7%).
2. Find all solutions of x? + 13x3 — x + 100,336 = 0 (mod 17°).

Programming Projects
Write programs using Maple, Mathematica, or a language of your choice to do the following.

1. Use Hensel’s lenmma to solve congruences of the form f(x) = 0 (mod p"), where f(x)
is a polynomial, p is prime, and r is a positive integer.

4.5 Systems of Linear Congruences

We will consider systems of more than one congruence that involve the same number
of unknowns as congruences, where all congruences have the same moduios. We begin
our study with an example.

Suppose that we wish to find all integers x and y such that both of the congruences

3x ++4y =5 (mod 13)
2x + 3y =7 {mod 13)

ate satisfied. To attempt to find the unknowns x and y, we multiply the first congruence
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by 5 and the second by 4, to obtain

15x + 20y =25 (mod 13)

8x + 20y =28 (mod 13).
We subtract the second congruence from the first, to find that
7x = =3 (mod 13).

Since 2 is an inverse of 7 {mod 13), we multiply both sides of the above congruence by
2. This gives

2-7x=-2-3(mod 13),

which tells us that
x =7 {mod 13},

Likewise, we can multiply the first congruence by 2 and the second by 3 (of the original
system), o see that

6x + 8y =10 (mod 13)
6x + 15y =21 (mod 13).

When we subtract the first congruence from the second, we obtain
7y =11 {(mod 13).

To solve for y, we multiply both sides of this congruence by 2, an inverse of 7 modulo
13. We get
2.-7y=2.11(mod 13},
s0 that
y=9(mod 13).

What we have shown is that any solution (x, y) must satisfy
x=7(mod 13), y=9(mod 13).

When we insert these congruences for x and y into the original system, we see that these
pairs actually are solutions:

3x+4y=3-74+4-9=57=5(mod 13)

204 3y=2-7T+5-9=59="7 (od 13).
Hence, the solutions of this system of congruences are all pairs (x, y) such that x =
7 (mod 13) and y = 9 {mod 13).

We now give a general result concerning certain systems of two congruences in two
unknowns, (This result resembles Cramer’s rule for solving systems of linear equations.)

Theorem 4.15. Leta, b, ¢, d, e, f, and m be integers, m = (), such that (A, m) =1,
where A = ad — be. Then the system of congruences

ax + by = e (mod m)
cx +dy = f (mod m)
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has a unique solution medulo m, given by
x = A(de — bf)(mod m)
y = Alaf — ce) (mod m),
where A is an inverse of A modulo m.

Proof. 'We multiply the first congruence of the system by d and the second by b, to
obtain

adx + bdy = de(mod m)
bex + bdy = bf (mod m).

Then we subtract the second congruence from the first, to find that
{ad — bc)x =de — bf (mod m),
or, since A = ad — bc,
Ax =de — bf (mod m).

Next, we multiply both sides of this congruence by A, an inverse of A modulo m, to
conclude that .

x = A(de — bf) (mod m).

In a similar way, we multiply the first congruence by ¢ and the second by a, to obtain

acx + bey = ce (mod m)
acx + ady = af (mod m).

We subtract the first congruence from the second, to find that
(ad — bc)y = af — ce (mod m)
or
Ay =af — ce (mod m).
Finally, we multiply both sides of this congruence by A to see that

y = A(af — ce) (mod m).

We have shown that if (x, y) is a solution of the system of congruences, then

x=A(de — bf) (modm), y= Alaf — ce) (mod m).

~ We can easily check that any such pair (x,y) is a solution. When x =
Alde — bf) (mod m) and y = A(af — ce) (mod m}, we have
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ax + by =aA(de — bf) +bA(af — ce)
= A(ade ~ abf — abf — bee)
= Alad ~ bee
= AAe
= ¢ {mod m),
and
cx +dy =cA(de — bf) +dA(af — ce)
= Alede —~ bef + adf — cde)
= A(ad — bey f
= AAf
= f (mod m).
This establishes the theorem. n

By similar methods, we may solve systems of n congruences involving n unknowns,
However, we will develop the theory of solving such systems, as well as larger systems,
by methods taken from linear algebra. Readers unfamiliar with linear algebra may wish
to skip the remainder of this section.

Systems of r linear congruences involving # unknowns will arise in our subsequent
cryptographic studies. To study such systems when » is large, it is helpful to use the
language of matrices. We will use some of the basic notions of matrix arithmetic, which
are discussed in most linear algebra texts.

Before we proceed, we need to define congruences of matrices.
Definition. Let A and B be n x k matrices with integer entries, with (i, Jithentries a;;
and b;;, respectively. We say that A is congruent to B modulo m if a;j = by; (mod m) for

all pairs (7, j) with 1 <i <nand 1 < j <k, We write A = B (mod m) if A is congruent
to B modulo m.

The matrix congruence A = B (mod m) provides a succinct way of expressing the
nk congruences a;;=b;; (modm)forl<i<mandli<j<k.

Example 4.24. 'We easily see that
Is 3y _ (4 3
(8 12)2(—3 1) (mod 11). <
The following proposition will be needed.
Theorem 4.16. If A and B are » x &k matrices with A=R (modm), Cisakxp

matrix, and D is a p x n matrix, all with integer entries, then AC = BC (mod m) and
DA =DB (mod m), '
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Proof. lettheentries of A and B be g;; and by, respectively, for 1 <i <n and1 < j <k,
and let the entries of Cbe ¢y for 1 <i =kand 1< j = p. The (i, j)th entries of AC and

BC are Ef:} a;;¢;; and ZLI bjseyj, respectively, for 1 <i=n and 1 < j < p. Because
A =B (mod m), we know that a;, = b;, (mod m) for all / and k. Hence, by Theorem 4.3,
we see that ZLI Ay = Zle bj;c;; (mod m). Consequently, AC = BC (mod m}.
The proof that DA = DB (mod ) is similar and is omitted. [
Now let us consider the system of congruences
apxy -+ diaXo + -4+ Xy = b]_ (mod i?l)
ay1Xt + Xy + -4+ oy Xy = bz (mod f?l)

QX+ AypXy 4 - Xy, = bn (mOd m)'

Using matrix notation, we see that this system of n congruences is equivalent to the
matrix congruence AX = B (mod m), where

ajp ap ... dy Xy by

dp1 €3 ... dp X2 by
A= . , X=} .|, and B=

gy dpz e+ Qpp X b n

Example 4.25. The system
3x +4y =35 (mod 13)
2x + 5y =7 (mod 13)

(£ 96)-() > <

We now develop a method for solving congruences of the form AX =B {mod m).
This method is based on finding a matrix A such that AA =T (mod m), where I is the
identity matrix. ’

can be written as

Definition. If A and A are n X n matrices of integers and AA = AA =T (mod m),

10 ... 0
0 1 ... _

where I=1 . . is the identity matrix of order n, then A is said to be an
00 ... 1

inverse of A modulo m.

If A is an inverse of A and B = A (mod m), then B is also an inverse of A. This
follows from Theorem 4.16, because BA = AA =1 (mod m). Conversely, if B, and B,
are both inverses of A, then B; = B, (mod m). To see this, using Theorem 4.16 and
the congruence B|A = B, A =1 {mod 1), we have B|AB; = B,AB, (mod ). Because
AB; =1 (mod m), we conclude that B; = B, (imod m).
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Example 4.26. Given that

13\ (3 4 6 10\ (1 0
(2 4)(1 2)2(10 16)5(0 I) (mod 5)
34V 1 3\ _ /1 25\ _(1 0
(1 2)(2 4)2(5 11)5(0 1) (mod 3),

we see that the matrix ( :;‘ ;) is an inverse of ( ; z) modulo 5. «

and

The following proposition gives an easy method for finding inverses for 2 x 2
matrices.

Theorem 4,17, Let A = ( ‘: 2) be a matrix of integers, such that A =det A =

ad — be is relatively prime to the positive integer m. Then, the matrix

A:A(d —’J),
- [41

where A is the inverse of A modulo 2, is an inverse of A modulo m.

Proof. _'To verify that the matrix A is an inverse of A modulo n, we need only verify
that AA = AA =1 (mod m).

To see this, note that

i_fa by d b _ ad — be 0
AA:(C d)A(—c a)= ( 0 ~+b(:+ad)

A
_Af{A ON_{(AA o0 N_/1 0\ _

and
ixa_=<f{d b a bY_ : {ad-—-be 0
AA:A(—C a)(c a’):A( 0 —bc+ad)
_AfA ON_(AA 0 N_/1 0\ _
:A(O A)=( 0 Z\A):(O 1)_I(moch:»z),
where A is an inverse of A {mod s1), which exists because (A, m) = 1. [

25

< (5 —4\_(10 -8\ _[10 5

Example 4.27. Let A = (

we have

3 4). Because 2 is an inverse of det A = 7 modulo 13,
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To provide a formula for an inverse of ann X n matrix, where » is a positive integer
greater than 2, we need a result from linear algebra, It involves the notion of the adjoint
of a matrix, which is defined as foilows.

Definition. The adjoz.'nt. of an n X n matrix A is the # X » matrix with (i, j)th entry
Ciis where Cj; is (—Di*/ times the determinant of the matrix obtained by deleting the
ith row and jth column from A. The adjoint of A is denoted by adj (A), or simply adj A.

Theorem 4.18. If A is an n x n matrix with det A 7 0, then A (adj Ay = (det A},
where adj A is the adjoint of A.

Using this theorem, the following theorem follows readily.

Theorem 4.19. If A is an n x n matrix with integer entries and m is a positive integer
such that (det A, m) = 1, then the matrix A = A (adjA) is an inverse of A modulo m,
where A is an inverse of A == det A modulo m.

Proof. If (det A, m) = 1, then we know that det A 0. Hence, by Theorem 4.18, we
have

A (adjA) == (det A)[ == AL

Since (det A, m) = 1, there is an inverse A of A = det A modulo m. Hence,

A(A adjA) = A - (adjA)A = AAL=T (mod m),

and
A (adj A)A = A ((adj A)A) = AAT =1 (mod m).
This shows that A = A {adj A) is an inverse of A modulo . |
2 56
Example 428, Let A=|2 0 1 |. Then det A = —5. Furthermore, we have
1 2 3
(det A, 7) = 1, and we see that 4 is an inverse of det A = —5 (mod 7). Consequently,
we find that
) -2 -3 5 -8 —12 20 6 2 6
A=4(adjAy=4|-5 0 10 |=| 20 g 40l=]1 0 5] (mod7).
4 1 —10 16 4 —40 2 4 2

«

We can use an inverse of A modulo m to solve the system
AX = B (mod m),

where (det A,m) =1.By Theorem 4.16, when we multiply both sides of this congruence
by an inverse A of A, we obtain



4.5 Systems of Linear Congruences 181

A(AX) = AB (mod m)
(AA)X = AB (mod m)
X = AB (mod m).
Hence, we find the solution X by forming AB (mod n).

Note that this method provides another proof of Theorem 4.15. To see this, let
AX =B, where A = (“ ”), X = (") and B = ("’) If A=det A =ad — be
c d y f

is relatively prime to m, then

XY .v_in_f d b e\ 5 {de —bf
(y)—X=AB:A(_C a )(f)—A(af —ce) (mod m).

This demonstrates that (x, y) is a solution if and only if

x=A(de — bf) modm), y= A(af — ce) (mod m).

Next, we give an example of the solution of a system of three congruences in three
unknowns using matrices,

Example 4.29. We consider the system of three congruences

2%+ 5x7 + 6x3 =3 (mod 7)
2x1+ x3=4 (mod 7)
X+ 2x9 -+ 3x3=1(mod 7).

This is equivalent to the matrix congruence

2 5 6 X1 3
2 0 1 x| =14 (mod7).
1 2 3 A3 i
6 2 6 2 5 6
We have previously shown that thematrix [ 1 0 5 |isaninverseof [ 2 0 1
2 4 2 1 2 3
(mod 7). Hence, we have
xy 6 2 6 3 32 4
xni=|l1 0 5 4 |l=1 8 |=|1]| (mod7).
X3 2 4 2 i 24 3 <

Before leaving this subject, we should mention that many methods for solving sys-
tems of linear equations may be adapted to solve systems of congruences. For instance,
Gaussian elimination may be adapted to solve systems of congruences, where division
is always replaced by multiplication by inverses modulo m. Also, there is a method for
solving systems of congruences analogous to Cramer’s rule. We leave the development
of these methods as exercises for those readers familiar with linear algebra.
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4.5 Exercises

L

2.

* 3.

Find the solutions of each of the following systems of linear congruences.
a) x+2y=1(med5)
2x+y=1(mod5)

b} x +3y=1{mod 5}
3x +4y =2 (mod 5)

¢} 4dx-+y=2(mod5)
2x -+ 3y = 1 (mod 5}

Find the solutions of each of the following systems of linear congruences.
a) 2x +3y=5(mod 7)
x+5y=6(mod7)

b) 4x + y =35 (mod 7)
x+2y=4(mod7)
What are the possibilities for the number of incongruent solutions of the system of linear
congruences
ax + by =c{mod p)
dx +ey= f (med p),
where p is a prime and a, b, ¢, d, e, and f are positive integers?

. Find the matrix C such that

2 1 4 0
Cs(4 3) (2 1) {mod 5}

and all entries of C are nonnegative integers less than 5.

. Use mathematical induction to prove that if A and B are # x n matrices with integer

entries such that A = B (mod m), then A* = B* (mod ) for all positive integers k.

A matrix A # 1 is called involutory modulo m if A? =1 (mod m).

6.

7

Show that (1 é;) is involutory modulo 26.

Prove or disprove that if A is a 2 X 2 involutory matrix modulo m, then det A =
+1 (mod m).

. Find an inverse modulo 5 of each of the following matrices.

2 (o) w(3) (1)

. Find an inverse modulo 7 of each of the following matrices.

110 12 3 ;;é?

olito1) wl{i125) o

01 1 1 4 6 1011
01 1 1
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10, Using Exercise 9, find all the solutions of each of the following systems.

11.

* 12,

* 13,

a) J~'+)’51(1110'£i7) ) ¥x+y+z=1(mod7)
x+z=2(med7) X +y+w=1({mod7}
y+z=3(mod 7} X+z+w=1({mod 7

yt+z+w=1l{mod7)
b) x+2y+3z=1(mod7)
x+2y+52=1{mod7)
x+dy+b6z=1(mod7)

How many incongruent solutions does each of the following systems of congruences
have? o

a x4+ y+ z=1(mod5) ¢} Ix+ y+3z=1(mod3)
2x +4y +3z=1(mod 5) x+2y 4z =2 (mod 5)
4x + 3y +2z=73 (mod 5)

b 2x+3y 4+ z=3(mod5) d}) 2x+ y+ z=1l(mod3)
x+2y+3z=1(mod 5) x+2y+ z=1{mod 5
2x+ z=1(mod5) x4+ y4+2z=1(mod5)

Develop an analogue of Cramer’s rule for solving systems of n linear congruences in n
unknowns.

Develop an analogue of Gaussian climination to solve systems of # linear congruences
in m unknowns (where m and r may differ).

A magic square is a square array of integers with the property that the sum of the integers in
arow or in a column is always the same. In this exercise, we present a method for producing
magic squares,

* 14,

* 15,

% 16.

Show that the n? integers 0, 1,. . . ,n% — L are putinto the #2 positions of ann x square,
without putting two integers in the same position, if the integer & is placed in the ith row
and jth column, where

i=a+ ck+efk/n] (mod n),
j=b+dk+ flk/n] (modn),

I=is=nl<j=nanda,b,c,d, e and f are integers with (cf — de, n) = 1.

Show that a magic square is produced in Exercise 14 if (¢, n) = {d,n)={e,n) = (f,n)
=1

The positive and negative diagonals of an n x n square consist of the integersin positions
G, hvwherei + j=k (mod n)and i — j =k (mod n), respectively, where £ is a given
integer. A square is called diabolic if the sum of the integers in a positive or negative
diagonal is always the same. Show that a diabolic square is produced using the procedure
given in Exercise 14 if (c +d,n) =(c —d,n) = (e + f,n) = (e — fimy=1
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Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Produce 4 x 4, 5 x 5, and 6 x 6 magic squares.

Programming Projects
Write programs using Maple, Mathematica, or a language of your choice to do the following.

1. Find the solutions of a system of two linear congruences in two unknowns using Theorem
4.15.

2. Find inverses of 2 x 2 matrices using Theorem 4.17.

3. Find inverses of n x 1 matrices using Theorem 4.19.

4, Solve systems of » linear congruences in » unknowns using inverses of matrices.
5

. Solve systems of n linear congruences in # unknowns using an analogue of Cramer’s
rule (see Exercise 12).

6. Solve systems of n linear congruences in m unknowns using an analogue of Gaussian
climination (see Exercise 13).

7. Given a positive integer, produce an n X r magic square by the method given in Exer-
cise 14.

Factoring Using the Pollard Rho Method

1n this section, we will describe a factorization method based on congruences that was
developed in 1974 by I. M. Pollard. Pollard called this technique the Monte Carlo
method because it relies on generating integers that behave as though they were randomly
chosen; it is now commonly known as the Pollard rho method, for reasons which will be
explained.

Suppose that # is a large composite integer and that p is its smallest prime divisor.
Qur goal is to choose integers xq, Xy, . . . , X, so that these integers have distinct least
nonnegative residues modulo n, but where their least nonnegative residues modulo p are
not all distinct. As can be seen using probabilistic arguments (see [Ri94]), this is likely
to be the case when s is large compared to ,/p but smatl when compared to /1, and the
numbers are chosen randomly.

Once we have found integers x; and x;, 0 <7 < j <, such that x; = x; (mod p)
but x; # x; (mod n), it follows that {(x; — x;, 1) is a nontrivial divisor of n, as p divides
x; — X, butn does not. The number (x; - x;, n} can be found quickly using the Euclidean
algorithm, However, to find (x; — x;, n) for each pair (i, j) with 0 <¢ < j < s requires
that we find O (s%) greatest common divisors. We will show how to reduce the number
of times we must use the Euclidean algorithm.
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To find such integers x; and x;, we use the following procedure: We start with a seed
value xg that is chosen randomly and a polynomial function f(x) with integer coefficients
of degree greater than 1. We compute the terms x;, k= 1,2,3,.. ., using the recursive
definition

X1 = f(xp) (mod i), 0= <n.

The polynomial f(x) should be chosen so that the probability is high that a suitably large
number of integers x; are generated before they repeat, Empirical evidence indicates
that the polynomial f(x) = x2 - 1 performs well for this test, The following example
illustrates how this sequence is generated.

Example 4.30. Letn = 8051, and suppose that x5 =2 and f(x) = x2 - 1. We find that
x1=15, xp = 26, x5 = 677, x4, = 7474, x5 = 2839, x4 = 871, and so0 on. «

Now, note that by the recursive definition of Xy, it follows that if
X =x; (mod 4),
where d is a positive integer, then

Yip1 = fx) = f(x;) = x5, (mod ),

It follows that if x; = x; (mod 4), then the sequence x, becomes periodic modulo d with
aperiod dividing j — i, That s, X, =x, (mod d) wheneverg =r (inod j —i),andg > i
and r = i. It follows that if 5 is the smallest multiple of j — 7 that is at least as large as
i, then x; = x,, (mod d).

It follows further that to look for a factor of 1, we find the greatest common divisor
of xop —xpandn fork=1,2,3,.. .. We have found a factor of n when we have found
a value k for which 1 < (xy; —~ xp, n) < n. From our observations, we see that it is likely
that we will find such an integer & with & close to /P

In practice, when the Pollard tho method is used, the polynomial f(x) = x? + lis
often chosen to generate the sequence of integers xp, x5, x5, . . ., Xp, . . . - Furthermore,
the seed xq = 2 is often used. This choice of polynomial and sced produces a sequence
that behaves much like a random sequence for the purposes of this factorization method.

Example 4.31.  We use the Pollard rho method with seed xg = 2 and generator poly-
nomial f(x)=x?+ 1 to find a nontrivial factor of 1 = 8051. We find that x =35
Xy =26, x3= =677, x, = 7474, x5 = 2839, xg =871, Using the Euclidean algorithm,
it follows that (x; — x, 8051) == (26 — 5, 8051) = (21, 8051) = 1 and (xg — x5,805) =
(7474 — 26, 8051) = (7448, 8051) = 1. However, we find a nontrivial factor of 3051 at
the next step, as (xg — x3, 8051) = (871 — 677, 8051) = (194, 8051) = 97. We see that
97 is a factor of 8051. -«

To see why this method is called the Pollard rho method, look at Figure 4.1 on the
next page. This figure shows the periodic behavior of the sequence x;, where xj =2
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and x; + 1= x,?' + 1(mod 97, i > 1. The part of this sequence that occurs before the
periodicity is the tail of the rho, and the loop is the periodic part.

x, =26 1
Xy = 677=95 (mod 57)
=5
sy
x,= 7474 =35 (mod 97)
X= o

Figure 4.1 The Pollard rho method.

The Pollard rho method has proved to be practical for the factorization of integers

with moderately large prime factors. In practice, the first attempt to factor a large integer
is to do tral division by small primes, say by all primes less than 10,000. Next, the
Pollard rho method is used to look for prime factors of intermediate size (up to 1015,
for instance). Only after trial division by small primes and the Pollard rho method have
failed are the really big guns brought in, such as the quadratic sieve or the elliptic curve
method.

4.6 Exercises

1. Use the Pollard rtho method with xg =2 and f(x) = x% + 1o find the prime factorization

of each of the following integers.

ay 133 ¢y 1927 e} 36,287
by 1189 dy 8131 f) 48,227

. Use the Pollard rho method to factor the integer 1387, with the following seeds and

generating polynomials.

a) xp=2, flx)=x*+1

b) =3, fx)=x%+1

&) xg=2, fx)=x%—1

A =2, fX)=x>+x+1

. Explain why the choice of f(x) as & linear polynomial, that is, a function of the form

f(x) =ax + b, where a and b are integers, is a poor choice.
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4.6 Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Use the Pollard rho method to factor ten different integers that have between 15 and 20
decimal digits.

2, Use the Pollard rho method to factor a large number of integers that are close to 100,000,
keeping track of the number of steps required. Can you make any conjectures based on
your data?

3. Factor 238 4 1 using the Pollard rho method.

Programming Projects
Write programs using Maple, Mathematica, or a language of your choice to do the following.

1. Givenapositive integer n, find a prime factor of this integer using the Pollard tho method.






5.1

Applications of
Congruences

Introduction

Congruences have diverse applications. We have already seen some examples of this,
such as in Section 4.3, where we saw how large integers can be multiplied on a computer
using congruences, This chapter covers a wide variety of interesting applications of
congruences. First, we will show how congruences can be used to develop divisibility
tests, such as the simple tests you may already know for checking whether an integer is
divistble by 3 or by 9. Next, we will develop a congruence that determines the day of
the week for any date in history. Then, we will show how congruences can be used to
schedule round-robin tournaments. We will discuss some applications of congruences
in computer science; for example, we will show how congruences are used in hashing
functions, which themselves have many applications, such as determining computer
memory locations where data is stored, Finally, we will show how CONZIUENCes Can
be used to construct check digits, which are used to determine whether an identification
number has been copied in error.

In subsequent chapters, we will discuss additional applications of congruences. For
examtple, in Chapter 8, we will show how congruences can be used in different ways to
make messages secret, and in Chapter 10, we will show how congruences can be used
to generate pseudorandom numbers,

Divisibility Tests

You may have learned in primary school that to check whether an integer is divisible by
3, you need only check whether the sum of its digits is divisible by 3. This is an example
of a divisibility test that uses the digits of an integer to check whether it is divisible
by a particular divisor, without actually dividing the integer by that possible divisor.
In this section, we will develop the theory behind such tests. In particular, we will use

18%
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congruences to develop divisibility tests for integers based on their base b expansions,
where b is a positive integer. Taking b = 10 will give us the well-known tests for checking
integers for divisibility by 2, 3, 4, 5, 7, 9, 11, and 13. Although you may have learned
these divisibility tests a long time ago, you will learn why they work here.

Divisibility by Powers of 2 First, we develop tests for divisibility by powers of 2. Let
n = 32,688,048 Itis easy to see that » is divisible by 2 since its last digit is even. Consider
the following questions. Does 22 = 4 divide n? Does 2° = 8 divide n? Does 2% = 16 divide
n? What is the highest power of 2 that divides n? We will develop a test that does not
require that we actually divide n by 4, 8, and successive powers of 2, which answers
these guestions.

In the following discussion let n = (apay_1 - .. aag)p. Then n = ap 105+
ap 105 ot @10 4 ap, with 0 < a; < 9for j =0,1,2,...,k.

Because 10 = 0 (mod 2), it follows that 10/ = 0 (mod 2/) for all positive integers j.
Hence,

n = (ag)yo (mod 2},
n = (ayap) g (mod 2%),

n = (aagag)1e (mod 27),

— k
n= (ﬂk__lak_z ‘e (12(!1{10) 10 (mod 2 )

These congruences tell us that to determine whether an integer n is divisible by 2, we
only need to examine its last digit for divisibility by 2. Similarly, to determine whether
n is divisible by 4, we only need to check the integer made up of the last iwo digits of
n for divisibility by 4. In general, to test n for divisibility by 27, we only need to check
the integer made up of the last j digits of n for divisibility by 2/.

Example 5.1. Let n = 32,688,048. We see that 2 | n because 2 | 8, 4 | n because
4148, 8 | n because 8 | 48, 16 | n because 16 | 8048, but 32 ) n since 32 f 88,048, <«

Divisibility by Powers of 5 Next, we develop divisibility tests for powers of 5.

To develop tests for divisibility by powers of 5, first note that because 10 =
0 (mod 5), we have 10/ = 0 (mod 5/). Hence, divisibility tests for powers of 5 are anal-
ogous to those for powers of 2. We only need to check the integer made up of the last j
digits of n to determine whether n is divisible by 5/.

Example 5.2. Letn = 15,535,375, Because 5| 5, 5 | #, because 25 | 75, 25 | n, because
125 375,125 { i, but because 625 } 5375, 625 f n. <
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Divisibility by 3 and 9 Next, we develop tests for divisibility by 3 and by 9.
Note that both the congruences 10 = 1 (inod 3) and 10 = 1 (mod 9} hold. Hence,
10* = 1 (mod 3) and 10* = | (mod 9). This gives us the useful congruences
(akak_l e (II(IO)IO = akIOk + ak__ll()k_l + 4 G[IO -+ dy
=d -+ a1+ -+ ap -+ ag (mod 3} and {mod 9).

Hence, we only need to check whether the sum of the digits of n is divisible by 3, or by
9, to see whether » is divisible by 3, or by 9, respectively.

Example 5.3. Let n = 4,127,835, Then, the sum of the digitsof nisd + 142474+
8+3—§—5=30.Becau563[30but9,|’30,3[nbut9,{’n. «

Divisibility by 11 A rather simple test can be found for divisibility by 11.

Because 10 = —1 (mod 11), we have

(akakkl . (11(10)[0 =ak10k 4+ ak_li{)k_l 4+ +(1110 -+ tIg
l“—:ak(—l)k + akﬁi(—l)k_l +--—ay+ag{mod 11).
This shows that (agag_, . . . @ya) 1 is divisible by 11 if and only if ag—ajtag—---+

(— l)kak, the integer formed by alternately adding and subtracting the digits, is divisible
by I1.

Example 5.4. We see that 723,160,823 is divisible by 11, because alternately adding
and subtracting its digits yields 3— 24+ 8 ~04+6 — 143 — 2+ 7= 22, which is
divisible by 11. On the other hand, 33,678,924 is not divisible by 11, because 4 — 2 +
9—8+7-06+3—3=41isnot divisible by 11. «

Divisibility by 7, 11, and 13 Next, we develop a test to simultaneously check for
divisibility by the primes-7, 11, and 13,

Note that 7- 11+ 13 = 1001 and 10° = 1000 = —1 (mod 1001). Hence,

(arap_y. . .ag) g = az 105 + A 105 T a0+ a,
= (ap + 10a; + 100a;) + 1000¢a3 + 10a, + 100a5)
+ (1000)%(ag + 10a; + 100ag) + - - -
= (100a; + 10a; + ag) — (100a5 + 10a, + a3)
-+ (100ag 4 10a; + ag) - - - -
= (ma)ap) 1y ~ (asasas) g -+ {agazag) g — - - - (mod 1001).
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This congruence tells us that an integer is congruent modulo 1001 to the integer formed
by successively adding and subtracting the three-digit integers with decimal expansions
formed from successive blocks of three decimal digits of the original number, where
digits are grouped starting with the rightmost digit. As a consequence, because 7,11,
and 13 are divisors of 1001, to determine whether an integer is divisible by 7, 11, or 13,
we only need to check whether this alternating sum and difference of blocks of three
digits is divisible by 7, 11, or 13.

Example 5.5. Let n = 59,358,208, Because the alternating sum and difference of the
integers formed from blocks of three digits, 208 — 358 + 59 = —91, is divisible by 7 and
13, but not by 11, we see that » is divisible by 7 and 13, but not by 11 «

Divisibility Tests Using Base b Representations  All of the divisibility tests we have
developed thus far are based on decimal representations. We now develop divisibility
tests using base b representations, where b is a positive integer.

Theorem 5.1. Ifd | & and j and k are positive integers with j <k, then {a - - - a;a0)p
is divisible by ¢/ if and only if (a;._; - - - aja),, is divisible by 4/.
Proof Because b =0 (mod d), it follows that b/ = 0 (mod d/). Hence,
(akak_l L alao)b zﬂkbk + . + (Ijb‘r “-[‘ aj_[bf*l-l- e +a1b + ag
= (Ij,lbjAl + -4 alb + dg
= (aj_1- - a@g)y (mod d’y.
Consequently, d/ | (ayag_, - - - agag)y if and only if @/ [ (a;_1 - - - 2180)p- "
Theorem 5.1 extends to other bases the divisibility tests of integers expressed in
decimal notation by powers of 2 and by powers of 5.
Theorem 5.2. Ifd | (b — 1), thenn = (a; . . . aap)y, is divisible by 4 if and only if the
sum of digits a; -+ - - - + a; + ag is divisible by 4.

Proof. Because d | (b — 1), we have b= | (mod d), so that by Theorem 4.7 we
have b7 = 1 (mod d) for all positive integers j. Hence, n = {a; ... @1d0)p = a b* +-
coitabtag=ag+ - +ay + ag (mod d). This shows that d | n if and only if
difa+- - +a +ag) "

Theorem 5.2 extends to other bases the tests for divisibility of integers expressed in
decimal notation by 3 and by 9.

Theorem 5.3, Ifd | (b + 1), thenn = (a; . . . @1ap) is divisible by d if and only if the

alternating sum of digits (—1)*a; + - - - — @, -+ ag is divisible by 4.
Proof. Becaused | (b + 1}, we have b = —1 (mod d). Hence, bl = (—1)/ (mod d), and
consequently, n = (ay . . . qyag)y = (—1*a; + - - - — ay + ag (mod d). Hence, d | n if and

only ifd | ((—D¥a; + -+ — a; +ap). n
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Theorem 5.3 extends to other bases the test for divisibility by 11 of integers expressed
in decimal notation,

Example 5.6, Letn = (7F28A6)¢ (in hex notation). Then, because 2 | 16, from Theo-
rem 5.1 we know that 2 [ n, because 2 | 6, Likewise, because 4 | 16, we see that 4 } n,
because 4 f 6. By Theorem 5.2, because 3| (16 — 1), 5 {{16 —1),and 15! (16 — 1), and
T+F+2+8+4 A+ 6=(30);5 we know that 3 | n, since 3 ! (30}, whereas 5 } n
and 15 f n, because 5 } (30),4 and 15 } (30),¢. Furthermore, by Theorem 5.3, because
17116+ Dandn=6—A-+8—24+F—7= {A)15(mod 17), we conclude that 17 f #,
because 17 f (A)jq. -«

Example 5.7. Let n = (1001001111),. Then, using Theorem 5.3 we see that 3 | n,
becausen=1-1+1—-14+0—-04+1—-0+0— 1=0¢mod3yand 3| (2 + D). «

5.1 Exercises
1. Determine the highest power of 2 that divides each of the following positive integers.

a) 201,984 c) 89,375,744
b) 1,423,408 d) 41,578,912,246

2. Determine the highest power of 5 that divides each of the following positive integers.

a) 112,250 c¢) 235,555,790
b} 4,860,625 d) 48,126,953,125
3. Which of the following integers are divisible by 3? Of those that are, which are divisible
by 9?
a) 18,381 c) 987,654,321
b) 65,412,351 d) 78,918,239,735

4. Which of the following integers are divisible by 117

a) 10,763,732 ¢) 674,310,976,375
b) 1,086,320,015  d) 8,924,310,064,537

5. Find the highest power of 2 that divides each of the following integers.

a) (101111110),  c) (111000000),
b) (1010000011),  d) (1011011101,

6. Determine which of the integers in Exercise § are divisible by 3.

7. Which of the following integers are divisible by 27

a) (1210122), ¢) {1112201112),
b) (211102101); ) (1012222201110,

8. Which of the integers in Exercise 7 are divisible by 47
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9.

10.

Which of the following integers are divisible by 3, and which are divisible by 5?

a) (3EA235) ¢ c) (F117921173),4
b) (ABCDEF);s  d) (10AB987301F) ¢

Which of the integers in Exercise 9 are divisible by 177

A repunit is an integer with decimal expansion containing all 1s.

11,
12.
13.
14.

Determine which repunits are divisible by 3, and which are divisible by 5.
Petermine which repunits are divisible by 1L
Determine which repunits are divisible by 1001, Which are divisible by 77 by 13?7

Determine which repunits with fewer than 10 digits are prime.

A base b repunit is an integer with base b expansion containing all is,

15,
16.

Determine which base b repunits are divisible by factors of & — 1.

Determine which base b repunits are divisible by factors of b + 1.

A base b palindromic integer is an integer whose base b representation reads the same
forward and backward.

17.

18.

19.

20.

21

22.

23,

Show that every decimal palindromic integer with an even number of digits is divisible
by 1L

Show that every base 7 palindromic integer with an even number of digits is divisible
by 8.

Develop a test for divisibility by 37, based on the fact that 10° =  (mod 37). Use this to
check 443,692 and 11,092,785 for divisibility by 37.

Devise a test for integers represented in base b notation to check for divisibility by »,
where » is a divisor of % 4 1. (Hint: Split the digits of the base b representation of the
integer into blocks of two, starting on the right.)

Use the test that you developed in Exercise 20 to decide whether

ay {101110110), is divisible by 5.

by (12100122), is divisible by 2, and whether it is divisible by 3.

¢) (364701244)4 is divisible by 5, and whether it is divisible by 13.

d) (5837041320219}, is divisible by 101.

An old receipt has faded. It reads 88 chickens at a total of $x4.2y, where x and y are
unreadable digits. How much did each chicken cost?

Use a congruence modulo 9 to find the missing digit, indicated by a question mark:
89,878 - 58,965 = 5299 ? 56270.

We can check a multiplication ¢ = gb by determining whether the congruence ¢ = ab
(mod m) is valid, where m is any modulus. If we find that ¢ is not congruent to ab mod-
ulo 1, then we know that an error has been made. When we take m = 9 and use the fact that
an integer int decimal notation is congruent modulo 9 to the sum of its digits, this check is
called casting out nines.

24,

Check each of the following multiplications by casting out nines.
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a) 875,961 - 2753 =2,410,520,633
b) 14,789 - 23,567 = 348,532,367
c) 24,789 . 43,717 = 1,092,700,713
25. Is a check of a multiplication by casting out nines foolproof?

26. What combinations of digits of a decimal expansion of an integer are congruent to this
integer modulo 997 Use your answer to devise a check for multiplication based on casting
ont ninety-nines. Then use the test 1o check the multiplications in Exercise 24.

Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Determine whether the repunit with » digits is prime, where # is a positive integer not
exceeding 30. Can you go further?

Programming Projects
Wiite programs using Maple, Mathematica, ot a language of your choice to do the following,
1. Given a positive integer », determine the highest powers of 2 and of 5 that divide n.

2. Given a positive integer n, test n for divisibility by 3,7, 9, 11, and 13. (Use congruences
modulo 1001 for divisibility by 7 and 13.)

3. Given a positive integer », determine the highest power of each factor of & that divides
an integer from the base b expansion of n.

4. Test a positive integer n, from its base b expansion, for divisibility by factors of b — 1
andof b+ 1,

The Perpetual Calendar

In this section, we derive a formula that gives us the day of the week of any day of any
year. Because the days of the week form a cycle of length seven, we use a congruence
modulo 7. We denote each day of the week by a number in the set 0, 1, 2, 3, 4, 5, 0,
setting

¢ Sunday =0,
* Monday =1,
* Tuesday =2,

¢ Wednesday =3,
s Thursday = 4,

* Friday =5,

* Saturday = 6.
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Julius Caesar changed the Egyptian calendar, which was based on a year of exactly
365 days, to a new calendar, called the Julian calendar, with a year of average length
365 Y4 days, with leap years every fourth year, to better reflect the true length of the
year. However, more recent calculations have shown that the true length of the year is
approximately 365.2422 days. As the centuries passed, the discrepancies of 0.0078 days
per year added up, so that by the year 1582 approximately 10 extra days had been added
unnecessarily in leap years. To remedy this, in 1582 Pope Gregory set up a new calendar.
First, 10 days were added to the date, so that October 3, 1382, became October 15, 1582
(and the 6th through the 14th of October were skipped). Tt was decided that leap years
would be precisely the years divisible by 4, except that those exactly divisible by 100,
the years that mark centuries, would be leap years only when divisible by 400. As an
example, the years 1700, 1800, 1900, and 2100 are not leap years but 1600 and 2000
are. With this arrangement, the average length of a calendar year became 365.2425 days,
rather close to the true year of 365.2422 days. An error of 0.0003 days per year remains,
which is 3 days per 10,000 years. In the future, this discrepancy will have to be accounted
for, and various possibilities have been suggested to correct for this error.

In dealing with calendar dates for various parts of the world, we must also take into
account the fact that the Gregorian calendar was not adopted everywhere in 1582. In
Britain and what is now the United States, the Gregorian calendar was adopted only in
1752, and by then it was necessary to add 11 days. In these places September 3, 1752,
in the Julian calendar became September 14, 1752, in the Gregorian calendar. Japan
changed over in 1873, Russia and nearby countries in 1917, while Greece held out until
1923,

We now set up our procedure for finding the day of the week for a given date in the
Gregorian calendar, We first must make some adjustments, because the extra day in a
leap vear comes at the end of February. We take care of this by renumbering the months,
starting each year in March, and considering the months of January and February part
of the preceding year. For instance, February 2000 is considered the twelth month of
1999, and May 2000 is considered the third month of 2000, With this convention, for the
day of interest, let

¢+ k = day of the month,

* 1 = month,

with

January =11 July =35
February =12 August =6
March =1 September =7
April =2 October =8
May =3 November =9
June =4 December = 10

* N =year,

where N is the current year unless the month is January or February in which case
N is the previous year, and where N = 100C 4+ Y, where
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* C =century,
* Y =particular year of the century.

Example 5.8. For the date April 3, 1951, we have k = 3, i = 2, N=1951, C =19,
and ¥ = 51. But note that for Febroary 28, 1951, we have k = 28, m =12, N = 1950,
€ =19, and ¥ = 50, because, for our calculations, we consider February to be the twelfth
month of the previous year. «

We use March | of each year as our basis. Let dy represent the day of the week of
March 1 in year N. We start with the year 1600, and compute the day of the week March
I falls on in any given year, Note that between March 1 of year N -- 1 and March 1 of
year N, if year N is not a leap year, 365 days have passed; and because 365 = 1 (mod 7),
we see that dy = dy .1 + I (mod 7), whereas if year N is a leap year, because there is
an extra day between the consecutive firsts of March, we see that

dy =dy_1+2 (mod 7).

Hence, to find dy from d,4yq, we must first find out how many leap years have occurred
between the year 1600 and the year N (not including 1600, but including N); let us
call this number x. To compute x, first note that by the division algorithm there are
[N — 1600)/4] years divisible by 4 between 1600 and N, there are [(N — 16003 /100]
years divisible by 100 between 1600 and ¥, and there are (& ~ 1600)/400] vears
divisible by 400 between 1600 and N. Hence,
x =[N —1600)/4] — [(N — 1600)/100] + [(N — 1600}/400]
=[N /4] — 400 — [N/100] + 16 -+ [N /400] — 4
= [N/4] — [N/100] + [N /400] — 388.
(We have used the identity from Example 1.34 to simplify this expression.) Putting this
in terms of C and ¥, we see that
x=[(25C + (Y/4)] — [C + (Y/100)] + [{C/4) + (Y /4000] — 388
=25C + [¥/4]— C 4 [C/4] — 388
=3C+[C/4]+ [Y/4] - 3 (mod 7).
Here we have again used the identity from Example 1.4, the inequality Y/100 < 1, and

the equation [(C/4) + (Y/400)] = [C /41 (which follows from Exercise 19 of Section
L5, because ¥ /400 < 1/4).

We can now compute dyy from dygqq by shifting d gy by one day for every year that
has passed, plus an extra day for each leap year between 1600 and N. This gives the
following formula:

dNEleQ()-l-N“ 1600 +x
= dig0p -+ 100C + Y — 1600 -+ 3C + [C/4]+ [¥/4] — 3 (mod 7).

Simplifying, we have

dy =di00 — 2C + Y + [C/4) + [Y /4] (mod 7).
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Now that we have a formula relating the day of the week for March 1 of any year to the
day of the week of March 1, 1600, we can use the fact that March 1, 1982, is a Monday
to find the day of the week of March 1, 1600. For 1982, because N = 1982, we have
C =19, and Y = 82, and since d|g3, = 1, it follows that

Hence, d}ggq = 3, so that March 1, 1600, was a Wednesday. When we insert the value of
1600, the formula for dy becomes

dy=3—2C 4 Y + [C/4]+ [Y/4] (mod 7).

We now use this formula to compute the day of the week of the first day of each
month of year N. To do this, we have to use the number of days of the week that the first
of the month of a particular month is shifted from the first of the month of the preceding
month. The months with 30 days shift the first of the following month up 2 days, because
30 = 2 (mod 7), and those with 31 days shift the first of the following month up 3 days,
because 31 = 3 (mod 7). Therefore, we must add the following amounts:

from March 1 to Apri! 1: 3 days
from April 1 to May 1: 2 days
from May | to June 1: 3 days
from June 1 to July 1: 2 days
from July 1 to August 1: 3 days

from August 1 to September 1: 3 days
from September 1 to October 1: 2 days
from October 1 to November 1: 3 days
from November 1 to December 1 2 days
from December 1 to January 1: 3 days
from January 1 to February 1: 3 days.

We need a formula that gives us the same increments. Notice that we have 11 increments
totaling 29 days, so that each increment averages 2.6 days. By inspection, we find that
the function {2.6m — 0.2] — 2 has exactly the same increments as m goes from 2 to 12,
and is zero when m = 1. (This formula was originally found by Christian Zeller;! he
apparently found it by trial and error.) Hence, the day of the week of the first day of
month m of year N is given by the least nonnegative residue of dy -+ [2.6m — 0.2] - 2
modulo 7.

To find W, the day of the week of day k of month m of year N, we simply add k — 1
to the formula we have devised for the day of the week of the first day of the same month.

! Christian Jutius Fohannes Zeller (1849-1899) was bom in Muhlhausen on the Neckar in Germany. He became
a priest at Schokingen after completing his theological studies. He served as the principal of a women's college
at Markgroningen from 1847 until 1898. He published his fosmula for the day of the week of a date in 1882.
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W=k-+[2.6m—02]—-2C+Y +[Y/4]+ [C/4] (mod 7).

We can use this formula to find the day of the week of any date of any year in the

Gregorian calendar.

Example§.9. To find the day of the week of January I, 1900, we have C = 18, ¥ = 99,
m = 11, and k = 1 (because we consider January as the eleventh month of the preceding
year). Hence, we have W =1+ 28 — 36 + 99+ 24 + 4 = 1 (mod 7), so that January |,

1900, was a Monday.

5.2 Exercises

«

1. Find the day of the week of the day you were born, and of your birthday this year,

2, Find the day of the week of the following important dates in U, S. history (use the Julian
calendar before September 3, 1752, and the Gregorian calendar from September 14,

1752, to the present)

* a) October 12, 1492
*b) May 6, 1692
* ¢} June 15, 1752
d)} July 4, 1776
e} March 30, 1867
f) March 17, 1888
g) February 15, 1898
k) July 2, 1925
i) July 16, 1945
i) July 20, 1969
k) August 9, 1974
1) March 28, 1979
m) Ianvary 1, 1984
n} December 25, 1991
o) June 5, 2027

{Columbus sights land in the Caribbean)

(Peter Minuit buys Manhattan from the natives)
{Benjamin Frankiin invents the lightning rod)
{U. S. Declaration of Independence)

(U. S. buys Alaska from Russia)

(Great blizzard in the Eastern U, 8.)

(U. S. Battleship Maine blown up in Havana Harbor)
(Scopes convicted of teaching evolution)

(First atomic bomb exploded)

(First man on the moon)

(President Nixon resigns)

{Three Mile Island nuclear accident)

(*Ma Bell” breakup)

{Demise of the U.S.S.R.)

(First man on Mars)

3. How many times will the 13th of the month fall on a Friday in the year 20207

4. How many leap years will there be from the year 1 until the year 10,000, inclusive?

5. To correct the small discrepancy between the number of days in a year of the Gregorian
calendar and an actual year, it has been suggested that the years exactly divisible by 4000
should not be leap years. Adjust the formaula for the day of the week of a given date to

take this comrection into account,

6. Show that days with the same calendar date in two different years of the same century,
28, 56, or 84 years apart, fall on the identical day of the week.

7. Which of your birthdays, until your one hundredth, fall on the same day of the week as

the day you were born?
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8. What is the next term in the sequence 1995, 1997, 1998, 1999, 2001, 2002, 20037
9, What is the next term in the sequence 1700, 1800, 1900, 2100, 2200, 23007

10. Show that the number of leap years that occur in any 400 consecutive years is always
the same and find this number of years.

11. Show the 13th day of each of two consecutive months is a Friday if and only if these
months are the February and March of a year for which January 1 falls on a Thursday,

#12. A new calendar called the Infernational Fixed Calendar has been proposed. In this

calendar, there are 13 months, including all of our present months, plus a new month,

@ called Sol, which is placed between June and July. Each month has 28 days, except for

5.2

53

the June of leap years, which has an extra day (leap years are determined the same way
as in the Gregorian calendar). There is an extra day, Year End Day, which is not in any
month, which we may consider as December 29. Devise a perpetual calendar for the
International Fixed Calendar to give the day of the week for any calendar date.

13. Show that every year in the Gregorian calendar includes at least one Friday the 13th.

14. Show that for every year of the Gregorian calendar and for every integer k with 1 <k <
30, as the 12 months of the year pass, the kth day of the month falls on all seven days of
the week.

15. Given a year in the Gregorian catendar, determine on how many different days of the
week the 31st of a month falls.

16. Determine the largest possible number of years in a century during which the month of
February has 5 Sundays.

Computational and Programming Exercises
Computations and Explorations

Using a computation program suich as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Find the number of times that the thirteenth of a month falls on a Friday for all years
between 1800 and 2300. Can you make and prove a conjecture based on your evidence?

Programming Projects
Write programs using Maple, Mathematica, or a language of your choice to do the following.
1. Give the day of the week of any date.

2. Print out a calendar of any year.

3. Print out a calendar for the International Fixed Calendar (see Exercise 12).

Round-Robin Tournaments

Congruences can be used to schedule round-robin tournaments. In this section, we show
how to schedule a tournament for N different teams, so that each team plays every other
team exactly once. The method we describe was developed by Freund [Fr536].
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First, note that if N is odd, not all teams can be scheduled in each round, because
when teams are paired, the total number of teams playing is even, So, if N is odd, we add
a dummy team, and if a team is paired with the dummy team during a particular round,
it draws a bye in that round and does not play. Hence, we can assume that we always
have an even number of teams, with the addition of a dummy team if necessary.

We label the N teams with the integers 1,2,3,..., N — 1, N. We construct a
schedule, pairing teams in the following way. We have team /, with i # N, play team
Jy with j # N and j #i, in the kth round if 7 + j = k (mod N — 1). This schedules
games for all teams in round k, except for team N and the one team 7 for which
2i =k {mod N — 1). There is one such team because Theorem 4.10 tells us that the
congruence 2x =k (mod N — 1) has exactly one solution with 1 < x < N — 1, because
(2, N — 1) = 1. We match this team { with team N in the kth round.

We must now show that each team plays every other team exactly once. We consider
the first N — 1 teams. Note that team i, where 1 <i < N — |, plays team N in round k,
where 2/ = k (mod ¥ — 1), and this happens exactly once. In the other rounds, team ;
does not play the same team twice, for if team/ played team j in both rounds k and &, then
i+j=k(modN —1),andi + j =k (mod N — 1), which is an obvious contradiction
because k # k' (mod N — 1), Hence, because each of the first N — 1 teams plays N — 1
games, and does not play any team more than once, it plays every team exactly once.
Also, team N plays N — 1 games, and since every other team plays team N exactly once,
team N plays every other team exactly once,

Example 5.10. To schedule a round-robin tournament with five teams, labeled 1, 2,
3, 4, and 5, we include a dummy team labeled 6. In round one, team 1 plays team I
where 1+ j = 1 (mod 5). This is the team j = 5 so that team 1 plays team 5. Team 2 is
scheduled in round one with team 4, since the solution of 2 4 j=l{mod5)is j =4,
Because { = 3 is the solution of the congruence 2i = 1 (mod 5), team 3 is paired with the
dummy team 6, and hence, draws a bye in the first round. If we continue this procedure
and finish scheduling the other rounds, we end up with the pairings shown in Table 5.1,

where the opponent of team i in round k is given in the kth row and ith column, -«
Team

Round 1 2 3 4 5
i 5 4 bye 1
2 bye 5 4 2
3 2 5 bye 3
4 3 | bye | 1 5 4
5 4 3 2 i bye

Table 5.1 Round-robin schedule for five teams.
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5.4

Applications of Congruences

Exercises
1. Set up a round-robin tournament schedule for the following.
a)7teams b)8teams c)%teams d) 10 teams

2. Inround-robin tournament scheduling, we wish to assign a home team and an away team
for each game so that each of n teams, where n is odd, plays an equal number of home
games and away games, Show that if, when i + j is odd, we assign the smaller of i and
j as the home team, whereas if / + j is even, we assign the larger of / and j as the home
team, then each team plays an equal number of home and away games.

w

In a round-robin toumament scheduling, use Exercise 2 to determine the home team for
each game for the following numbers of teams.

a) Steams b)7teams <¢)9 teams

Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
catry out the following computations and explorations.

1. Construct a round-robin schedule for a tournament with 13 teams, specifying a home
team for each game.

Programming Projects
Write programs using Maple, Mathemarica, or a language of your choice to do the following,
1. Schedule round-robin tournaments for » teams, where r is a positive integer.

2. Using Exercise 2, schedule round-robin tournaments for n teams, where r is an odd
positive integer, specifying the home team for each game.

Hashing Functions

A university wishes to store a file in its computer for each of its students. The identifying
number or key for each file is the social security number of the stadent. The social
security number is a nine-digit integer, so if is extremely infeasible to reserve a memory
location for each possible social security number. Instead, a systematic way to arrange
the files in memory, using a reasonable number of memory locations, should be used so
that each file can be easily accessed. Systematic methods of arranging files have been
developed based on hashing functions. A hashing function assigns to the key of each file
a particular memory location. Various types of hashing functions have been suggested,
but the type most commonly used involves modular arithmetic. We discuss this type of
hashing function here; for a general discussion of hashing functions, see Knuth {Kn97]
or [CoLeRi01].
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Let k be the key of the file to be stored; in our example, k is the social security
number of a student. Let m be a positive integer. We define the hashing function 2(k) by

h(k)y =k (mod m),

where 0 < (k) < m, so that /i(k) is the least positive residue of k modulo m. We wish
to pick m intelligently, so that the files are distributed in a reasonable way throughout
the m different memory locations 0, 1,2,...,m — 1.

The first thing to keep in mind is that m should not be a power of the base b that is
used to represent the keys. For instance, when using social security numbers as keys, m
should not be a power of 10, such as 103, hecause the value of the hashing function would
simply be the last several digits of the key; this may not distribute the keys uniformiy
throughout the memory locations. For instance, the last three digits of early issued social
security numbers may often be between 000 and 099, but seldom between 900 and 999,
Likewise, it is unwise to use a number dividing #* + a, where k and @ are smal Integers
for the modulus m. In such a case, i (k) would depend too strongly on the particular digits
of the key, and different keys with similar, but rearranged, digits may be sent to the same
memory location. For instance, if s = 111, then, since 111 | (10° — 1) = 999, we have
10°=1 (med 111), so that the social security numbers 064 212 848 and 064 848 212 are
sent to the same memory location, because

h(064 212 848) =064 212 848 =064 +- 212 + 848 = 1124 = 14 {mod 111}
and

h(064 848 212) = 064 848 212 = 064 + 848 + 212 = 1124 = 14 (mod 111).

To avoid such difficulties, m should be a prime that approximates the number
of available memory locations devoted to file storage. For instance, if there are 5000
memory locations available for storage of 2000 student files, we could pick m to be
equal to the prime 4969.

If the hashing function assigns the same memory location to two different files,
we say that there is a collision. We need a method to resolve collisions, so that files are
assigned to unique memory locations. There are two kinds of collision resolution policies.
In the first kind, when a collision occurs, extra memory locations are linked together to
the first memory location. When one wishes to access a file where this collision resolution
policy has been used, it is necessary to first evaluate the hashing function for the particular
key involved. Then the list linked to this memory location is searched.

The second kind of collision resolution policy is to look for an open memory location
when an occupied location is assigned to a file. Various suggestions have been made for
accomplishing this, such as the following techniques.

Starting with our original hashing function kg(k) = h(k), we define a sequence of
memory locations /1y (k), iy (), . . . . We first atternpt to place the file with key k atlocation
hplk). If this location is occupied, we move to location / 1(k). If this is occupied, we move
to location k4 (k), and so on.
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We can choose the sequence of functions / ;(k) in various ways. The simplest way
is to let

h (k) = (k) + j (mod m), 0 <h;k) <m.

This places the file with key k as near as possible past location h (k). Note that with this
choice of & ;(k}, all memory locations are checked, so if there is an open location, it will
be found. Unfortumtely, this simple choice of /1 ;(k) leads to difficulties; files tend to
cluster. We see that if ky 7 ky and Iy (kq) = h j{ky) for nonnegative integers { and j, then
h, skl =hj ko) fork=1,2,3,... .50 that exactly the same sequence of locations
is traced out once there is a collision. ThlS lowers the efficiency of the search for files in
the table. We would like to avoid this problem of clustering, so we choose the function
hik)ina different way.

To avoid clustering, we use a technique called double hashing. We choose, as before,
hi{k) = k (mod m),

with 0 < A (k) < m, where m is prime, as the hashing function. We take a second hashing
function

gky=k+1{modm — 2},
where 0 < g(k) <m — 1, so that (g (k), m) = 1. We take as a probing sequence
h (k) =h(k) + j - g(k) (mod m),

where 0 < /i ;(k) < . Because {g(k), m) = 1, as j runs through the integers 0, 1,2,
m—1,all memory locations are traced out. The ideal situation would be for m — 2 also
to be prime, so that the values g (k) are distributed in a reasonable way. Hence, we would
like #t — 2 and m to be twin primes.

Example 5.11. In our example using social security numbers, both m = 4369 and
n — 2 = 4967 are prime, Our probing sequence is

-

h (k) = h(k) + j - (k) (mod 4969),
where 0 < h;(k) <4969, h (k) = k (mod 4969), and g(k) =k + I (inod 4967).

Suppose that we wish to assign memory locations to files for students with the
following social security numbers:

k=344 401659 kg =372500 191
b, =325510778  kq==034367 980
by =212228844 kg = 546332190
ky=329938157 ko= 509496 993
ks=047900 151 kg = 132489 973,

Because k; = 269, ky = 1526, and k3 = 2854 (mod 4969), we assign the first three
files to locations 269, 1526, and 2854, respectively.
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Because &, = 1526 (mod 4969), but memory location 1526 is taken, we compute
hy(ky) = h(ky) + g(ky) = 1526 + 216 = 1742 (mod 4969); this follows because glhyy =
| 4+ k4 =216 (mod 4967).

Because location 1742 is free, we assign the fourth file to this location. The fifth,
six, seventh, and eighth files go into the available locations 3960, 4075, 2376, and 578,
respectively, because ks = 3960, kg = 4075, ky = 2376, and kg = 578 (mod 4969).

We {ind that kg = 578 (mod 4969); because location 578 is occupied, we com-
pute 11 (kg) = h(ky) + g (ko) = 578 + 2002 = 2580 (mod 4969), where g(ky) = 1+ kg =
2002 (mod 4967). Hence, we assign the ninth file to the free location 2580.

Finally, we find that k5 = 1526 (mod 4969), but location 1526 is taken. We com-
pute hl(klo) =l (kl(}) + g(‘kEU) = 1526 4 216 = 1742 (mod 4969), because g(klﬂ) =
I+ kyp = 216 (mod 4967), but location {742 is taken. Hence, we continue by finding
hy(kig) = h(kyp) + 2g(kyg) = 1958 (mod 4969) and in this available location we place
the tenth file.

Table 5.2 lists the assignments for the files of students by their social security
numbers. In the table, the file locations are shown in boldface. «

We wish to find conditions in which double hashing leads to clustering. Hence, we
find conditions when

&b k) = h j(ky)
and
(52) }lf+[(k1) = hj+1(k2)’

Social Security

Number h(k) hy(k) hy(k)
344 401 659 269

325 510 778 1526

212228 844 2854

329938 157 1526 | 1742

047900 151 3960

372 500 191 4075

034 367 980 2376

546332 190 578

509 496 993 578 | 2580

132 489 973 1526 | 1742 1958

Table 5.2 Hashing function for student files.
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so that the two consecutive terms of two probe sequences agree. if both {5.1) and (5.2)
occur, then

(5.3 hiky) +iglky) = hiky) + jg(ky) (mod m)
and
(5.4) hky) + (G + Dgtky) = hiky) + (7 + Dglky) (mod m).

Subtracting congruence (5.3) from (5.4), we obtain

g(ky) = glky) (mod m).

Because 0 < g(k) <m — 1, the congruence g(ky) = g(ky) (mod m) implies that g (k) =
g{ky). Consequently,

ki + 1=k + 1 {modm — 2),
which tells us that
ky=ky (modm — 2),

Because g(k;) = g(ky), we can simplify congruence (5.3) to obtain

h(k) = h(ky) (mod m),
which shows that

ky = ky (mod m).

Consequently, because (m — 2, 1) = 1, Theorem 4.8 tells us that

ky = ky (mod m@m — 2);.

Therefore, the only way that two probing sequences can agree for two consecutive terms
is if the two keys involved, k; and k;, are congruent modulo m(m ~ 2). Hence, clustering
is extremely rare. Indeed, if m(m — 2) > k for all keys %, clustering will never occur.

5.4 Exercises

1. A parking lothas 101 parking places. A total of 500 parking stickers are sold and only 50—
75 vehicles are expected to be parked at any time. Set up a hashing function and collision
resolution policy for assigning parking places based on license plates displaying six-digit
numbers.

2. Assign memory locations for students in your class, using as keys the day of the month
of birthdays of students, with hashing function 2(K) = K (mod 19), and
a) with probing sequence i ;(K) = h(K) + j (mod 19).
b) with probing sequence h;(K) = h(K) + j - g(K),0 < j <16, where g(K) =1+
K (mod 17).

3. Let a hashing function be #(K) == K (mod m), with 0 < h(K) < m, and let the probing
sequence for collision resolution be b {(K) = (K} + jgq (mod m), 0 < h;(K) <m, for
j=1,2,...,m — 1. Show that all memory locations are probed
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a) ifmisprimeand 1 <g <m — 1.
b) ifm =27 and ¢ is odd.

4. A probing sequence for resolving collisions where the hashing function is h(K) =
K (mod m), 0 < h(K) < m, is given by hi(K)y=h(K)+ j2h(K) + 1) (mod m), 0 <
hi(Ky <m.

a) Show that if m is prime, then all memory sequences are probed.
b) Determine conditions for clustering to occur; that is, when A FKD) = h;(K3) and
hj (K =h (Kpforr=1,2,....

5. Using the hashing function and probing sequence of the example in the text, find
open memory locations for the files of additional students with social security numbers
kyy =137 612 044, kip = 505 576 452, kg3 = 157 170 996, k,, = 131 220 418. (Add
these to the ten files already stored.)

5.4 Computational and Programming Exercises

5.5

Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Assign memory locations to the files of all the students in your class, using the hashing
function and probing function from Example 5.11. After doing so, assign memory
locations to other files with social security numbers that you make up.

Programming Projects

Write programs using Maple, Mathematica, or a language of your choice to assign memory
locations to student files, using the hashing function h(k) =k (mod 1021), 0 < h{k) < 1021,
where the keys are the social security numbers of students,

1. linking files together when collisions occur,
2. using hi(k)=h{k) + j(mod 1021), j =0,1,2,. .. as the probing sequence,

3. using Izj(k) =hky+j-gk), ;=012 ..., where g(k) = 1+ k(mod 1019), as the
probing seguence.

Check Digits

Congruences can be used to check for errors in strings of digits. In this section, we will
discuss error detection for bit strings, which are used to represent computer data, Then
we will describe how congruences are used to detect errors in strings of decimal digits,
which are used to identify passports, checks, books, and other types of objects,

Manipulating or transmitting bit strings can introduce errors. A simple error detec-
tion method is to append the bit string xx, . . . x,, with a parity check bit Xy defined
by

Ynpr =X+ x4+ -0+ x, (mod 2),
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so that x,, , ; = 0 if an even number of the first n bits in the string are 1, whereas x, =1
if an odd number of these bits are 1. The appended string xpx; . . . X, X, satisfies the
congruence

(5.5) Xpbxg b x, 4+ x, = 0 (mod 2).
‘We use this congruence to look for errors.

Suppose that we send x1x; . . . X, X, [, and the string y;yy . . . YpYpy 18 received.

These two strings are equal, that is, y; = x; fori = 1,2,...,n + I, when there are no
errors. But if an error was made, they differ in one or more positions. We check whether
(5.6) yityatoo Yy Yuqp =0 (mod 2)

holds. If this congruence fails, at least one error is present, but if it holds, errors may still
be present. However, when errors are rare and random, the most common type of error
is a single error, which is afways detected. In general, we can detect an odd number of
errors, but not an even number of errors (see Exercise 4).

Example 5.12.  Suppose that we receive 1101111 and 11001000, where the last bit in
each string is a parity check bit. For the first string, note that 1 + 1404+ 14+ 1+ 1+ 1=
0 (mod 2), so that either the received string is what was transmitted or it contains an
even number of errors. For the second string, note that 1+ 1+ 0+ 04+ 1+0+0+0=
1 (mod 2), so that the received string was not the string sent; we ask for retransmission,

<

Strings of decimal digits are used for identification numbers in many different
contexts. Check digits, computed using a variety of schemes, are used to find errors
in these strings. For instance, check digits are used to detect efrors in passport numbers.
In a scheme used by several European countries, if x|x;x3x4%5x6 is the identification
number of a passport, the check digit x7 is chosen so that

7= Txy -+ 31'2 +xy Ty + 33&35 + X {mod 10}.

Example 5.13. Suppose that the identification number of a passport is 211894. To find
the check digit x5, we compute

x=7-243-1+1-14+7-8+3-9+1-4=5 (mod 10),

so that the check digitis 5, and the seven-digit number 2118945 is printed on the passport.
4

We can always detect a single error in a passport identification number appended
with a check digit computed in this way. To see this, suppose that we make an error of
a in a digit; that is, y; = x; + a (mod 10), where x; is the correct jth digit and y; is the
incorrect digit that replaces it, From the definition of the check digit, it follows that we
change x; by either 7a, 3a, or a (mod 10), each of which changes x;, However, errors
caused by transposing two digits will be detected if and only if the difference between

these two digits is not 5 or —5, that is, if they are not digits x; and x; with | x; —x; |=35
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(see Exercise 7). This scheme also detects a large number of possible errors involving
the scrambling of three digits.

ISBNs

We now turn our attention to the use of check digits in publishing. Almost all recent books
are identified by their International Standard Book Number (ISBN '}, which is a ten-digit
code assigned by the publisher. For instance, the ISBN for the first edition of this text
is 0-201-06561-4. Here the first block of digits, 0, represents the language of the book
(English), the second block of digits, 201, represents the publishing company (Addison-
Wesley), the third block of digits, 06561, is the number assigned by the publishing
company to this book, and the final digit, in this case 4, is the check digit. (The sizes
of the blocks differ for different languages and publishers). The check digit in an ISBN
can be used to detect the errors most commonly made when ISBNs are copied, namely
single errors and errors made when two digits are transposed.

We will describe how this check digit is determined and then show that it can be used
to detect the commonly occurring types of errors, Suppose that the ISBN of a book is
X1X2 . - . X309, Where x4 is the check digit. (We ignore the hyphens in the ISBN, because
the grouping of digits does not affect how the check digit is computed.} The first nine
digits are decimal digits, that is, belong to the set {0,1,2,3,4,5,6,7, 8,9}, whereas the
check digit x1q is a base 11 digit, belonging to the set {0, 1, 2, 3,4, 5, 6,7, 8,9, X}, where
X is the base 11 digit representing the integer 10 (in decimal notation). The check digit
is selected so that the congruence

10
> ix; =0 (mod 11)
i=I
holds. As is easily seen (see Exercise 10), the check digit x;, can be computed from
the congruence xyy = Z?=! ix; (mod 11); that is, the check digit is the remainder upon
division by 11 of a weighted sum of the first nine digits,

Example 5.14.  We find the check digit for the ISBN of the first edition of this text,
which begins with 0-201-06561, by computing
xp=1-04+2-243.04+4-14+5-04+6-64+7-5+8.64+9-1=4(mod 11).

Hence, the ISBN is 0-201-06561-4, as previously stated. Similarly, if the ISBN number
of a book begins with 3-540-19102, we find the check digit using the congruence

x0=1-34+2-54+3-444.04+5-146-9+7-1+8-0+9-2=10 (mod 11).

This means that the check digit is X, the base 11 digit for the decimal number 10, Hence,
the ISBN number is 3-540-19102-X. -«

We will show that a single error, or a transposition of two digits, can be detected
using the check digit of an ISBN. First, suppose that x1x; . .. x,q is a valid ISBN, but
that this number has been printed as y,y; . . . 1. We know that Z}il ix; =0 (mod 11),
because xx; . .. xg is a valid ISBN.,
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Suppose that exactly one error has been made in printing the ISBN. Then, for some
integer j, we have y; = x; fori # jand y; = x; +a, where —10 <a < 10 and a # Q.
Here a = y; — x; is the ervor in the jth place. Note that

10

10
S iy =" ix; + ja= ja #0 (mod 17)
i=1

i=I

because 312 ix; =0 (mod 11) and, by Lemma 3.5, it follows that 11} ja because 11 } j
and 11 J a. We conclude that yy; . . .y is not a valid ISBN so that we can investigate
the error.

Now suppose that two unequal digits have been transposed; then there are distinct
integers j and & such that y; = x; and y, = x;, and y; = x; if i # j and i ;£ k. It follows
that

10 10
D iy = ixi+ (xe — jxp) + Goxp — kxp) = (f — ) lg — x) # 0 (mod 11)
i=1

i=}

because Z}g[ ix; =0 (mod 11), and 11 f (j — k) and 11} (x; — x;). We see that
Y1¥2 - - . Y10 18 not a valid ISBN, so that we can detect the interchange of two unequal
digits,

We have discussed how a single check digit can be used to detect errors in strings
of digits. However, using a single check digit, we cannot detect an error and then correct
it, that is, replace the digit in error with the valid one. It is possible to detect and correct
an error using additional digits satisfying certain congruences (see Exercises 20 and 22,
for example). The reader is referred to any text on coding theory for more information
on error detection and correction. Coding theory uses many results from different parts
of mathematics, including number theory, abstract algebra, combinatorics, and even
geometry. To find good sources of information, consult Chapter 14 of [Ro99a}. We also
refer the reader to the excellent articles by J. Gallian on check digits, [Ga92], [Ga91],
and [Ga9%6], {GaWi88], for related information, including how check digits for drivers
license numbers are found, and the book [Ki01] entirely devoted to check digits and
identification numbers.

5.5 Exercises

1. What is the parity check bit that should be added to each of the following bit strings?

a)y H11111 c} 101010 ey 11111111
b) 000000 d) 100000 ) 11001011

2. Suppose that you receive the following bit strings, where the last bit is a parity check bit.
Which strings do you know are incorrect?

ay 11111111t b) 0101010101010 ¢) 1111010101010101
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. Assume that each of the following strings, ending with a parity check bit, was received

correctly except for a missing bit indicated with a question mark. What is the missing
bit?

a) 1711111 b) 000710101 c) 70101010100

- Show that a parity check bit can detect an odd number of errors, but not an even number

of errors.

. Using the check digit scheme described in the text, find the check digit that should be

added to the following passport identification numbers.

a) 132999 b) 805237 c) 645153

. Arc the following passport identification numbers valid, where the seventh digit is the

check digit computed as described in the text?

a) 3300118 b) 4501824 c) 1873336

. Show that the passport check digit scheme described in the text detects transposition of

the digits x; and x; if and only if | x; — Xy i#S.

- The bank identification number printed on a check consists of eight digits, x;x5 . . . xg,

followed by a ninth check digit xg, where x5 = 7x; + 3xg + 9x3 -+ Ty 4+ 355 + 95 +
Tx7 + 3xg (mod 10).
a) What is the check digit folfowing the eight-digit identification number 001854037

b) Which single errors in bank identification numbers does a check digit computed in
this way detect?

c} Which transpositions of two digits does this scheme detect?

» What should the check digit be to complete each of the following ISBNs?

10.

11.

12,

13

a) 2-113-54001 ¢} 1-2123-9940
b) 0-19-081082 d) 0-07-038133

Show that the check digit x5 in an ISBN xx, ... x g can be computed from the
congrence xp = Z?:l ix; (mod L 1).

Determine whether each of the following ISBNs is valid,
a) 0-394-38049-5  ¢) 0-8218-0123-6 ) 90-6191-705-2
by 1-09-231221-3  d) 0-404-50874-X

Suppose that one digit, indicated with a question mark, in each of the following ISBNs
has been smudged and cannot be read. What should this missing digit be?

a) 0-19-873804-9  b) 91-554-2127-6  ¢) 7-261-05073-X

While copying the ISBN for a book, a clerk accidentally transposed two digits. If the
clerk copied the ISBN as 0-07-289095-0 and did not make any other mistakes, what is
the correct ISBN for this book?

Retail products are often identified by Universal Product Codes (UPCs), the most common
of which consists of 12 decimal digits. The first digit identifies a product category, the next
five the manufacturer, the following five the particular product, and the last digit is a check
digit. The check digit is determined by the following three steps that use the first 11 digits of
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the UPC. First, digits in odd-numbered positions, starting from the left, are added, and the
resulting sum is tripled. Second, the sum of digits in even-numbered positions is added to the
result of the first step. Third, the check is found by determining which decimal digit, when
added to the overall result of the second step, produces an integer divisible by 10.

14.

15.

16,

17,
18.

19,

* 20,

21.

Give a formula using a congruence that produces the check digit for a UPC from the 11
digits representing the product category, manufacturer, and particular product.

Determine whether each of the following 12-digit strings can be the UPC of a product.

ay( 4700000183 6 ¢) 05800000127 5
b)3 11000010389 d) 226500011794

What is the check digit for the 12-digit UPC code that begins with each of the following
11-digit strings?

a) 38137002918  ¢) 033003 31439
by 50117500557  d)4 11000 01028

Determine whether the 12-digit UPC code can always detect an error in exactly one digit.

Determine whether the 12-digit UPC code can always detect the transposition of two
digits.

Suppose we specify that the vatid 10-digit decimal code words xgx; . . . xyp are those
satisfying the congruence Z}z; x;=0{mod 11).

a) Can we detect all single errors in a code word?

b) Can we detect transposition of two digits in a code word?

Suppose that the only valid 10-digit code words xgx; . .. ¥jq are those satisfying the

congruences Z}g[ X = 21'121 ix; =0 (mod 11).

a) Show that the valid code words, where the first digits are decimal di gits, that is, in the
set{0,1,2,3,4,5,6,7, 8,9}, are those where the last two digits satisfy the congruences
xg= 300 + Dx; (mod 11) and xyp = Y519 — )x; (mod 11).

b) Find the number of valid decimal code words.

¢} Show that any single error in a code word can be detected and corrected, because the
location and value of the error can be determined,

d) Show that we can detect any error caused by transposing two digits in a code word.

The government of Norway assigns an 11-digit decimal registration number
XXy ... x); to each of its citizens using a scheme designed by Norwegian number
theorist E. Selmer. The digits x;x, . . . xg represent the date of birth, the digits x;xgxg
identify the particular person born that day, and x;g and xy; are check digits that are
computed using the congruences xq = 8x; + 4 + 5x3 + 101y + 3x5 4 2x6 + 77 +
6xg + 9x9 (mod 11), and x|y = 6x + Txy + 8x3 + 9xg + 4xs -+ Sxg -+ 6x7 + Tg + 8xg +
9xp (mod 11).

a) Determine the check digits that follow the first nine digits 110491238,

b) Show that this scheme detects all single errors in a registration number.

* ¢) Which double errors are detected?
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* 22. Suppose that we specify that the valid 10-digit code words X1X3 . .. X1g, Where each
digit is a decimal digit, are those satisfying the congruences Z}il X = Zggl ix; =
Zfi[ %y = Z}gl i3x; =0 (mod 11).

a) How many valid 10-digit code words are there?
b} Show how any two errors in a code word can be corrected.

¢) Suppose acode word has been received as 0284906710, If two errors have been made,
what is the correct code word?

Airline tickets carry 15-digit identification numbersaa, . . . a 14¢ty5, Where ay5 is a check digit
which equals the least nonnegative residue of the integer aydy ... a4 modulo 7,

23, Find the check digit a;5 when the first 14 digits of the identification of an airplane ticket
are

a) 00032781811224 b) 10238544 122339 ¢)00611133123278
24. Determine whether these are valid airline ticket identification numbers.
a) 102284711033122 b) 004113711331240 ¢) 160261413001533

25, Determine which errors in a single digit can be detected and which cannot be detected
using the check digit for airline tickets.

26. Determine which errors involving the transposition of two adjacent digits in the identi-
fication number of an airline ticket can be detected and which cannot be detected using
the check digit for airline tickets,

The International Standard Serial Number (ISSN) used to identify a periodical consists of
two blocks of four digits, where the last digit in the second black is a base 11 check digit.
As in an ISBN, the character X represents 10 (in decimal notation). The check digit dg is
determined by the congruence dg = 3d; + dd + 5dj -+ 6dy + Tds + 8dg + 9d; (mod 11).

27. For each of the following initial seven digits of an ISSN, determine the correct check

digit.
a) 0317-847 ¢) 1063-669
b) 0423555 d) 1363-837

28. Is it always possible to detect a single error in an ISSN? That is, is it always possible to
detect that an error was made when one digit of an ISSN has been copied incorrectly?
Justify your answer.

29, Ts it always possible to detect when two consecutive digits in an ISSN have been
accidentally transposed? Justify your answer.

Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Check the ISBN numbers of a selection of books to see whether the check digit was
computed correctly.
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Programming Projects

Write programs using Maple, Mathematica, or a language of your choice to do the following.

1. Determine whether a bit string, ending with a parity check bit, has either an odd or an
even number of errors.

2. Determine the check digit for an ISBN, given the first nine digits.

3. Determine whether a 10-digit string, where the first nine digits are decimal digits and
the last is a decimal digit or an X, is a valid ISBN.

4. Determine whether a 12-digit decimal string is a valid UPC.
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Introduction

In this chapter, we discuss three congruences that have both theoretical and practi-
cal significance: Wilson’s theorem shows that when p is prime, the remainder when
(p — Dlis divided by p is - 1. Fermat’s little theorem provides a congruence for the pth
powers of integers modulo p. In particular, it shows that if p is prime, then a” and a
have the same remainder when divided by p whenever a is an integer. Euler’s theorem
provides a generalization of Fermat’s Httle theorem for moduli that are not prime.

These three congruences have many applications. For example, we will explain how
Fermat’s little theorem can be used as the basis for primality tests and factoring algo-
rithms. We will also discuss composite integers, called pseudoprimes, that masquerade
as primes by satisfying the same congruence that primes do in Fermat's little theorem.
We will use the fact that pseudoprimes are relatively rare to develop some tests that can
provide overwhelming evidence that an integer is prime,

Wilson’s Theorem and Fermat’s Little Theorem

In a book published in 1770, English mathematician Edward Waring stated that one of
his students, John Wilson, had discovered that (p — D4 11is divisible by p whenever
p is prime. Furthermore, he stated that neither he nor Wilson knew how to prove it.
Most likely, Wilson made this conjecture based on numerical evidence. For example, we
can easily see that 2 divides 11+ [ =2, 3 divides 2! +1=3, 5divides 4! 4+ 1=125, 7
divides 6!+ I =721, and so on. Although Waring thought it would be difficult to find a
proof, Joseph Lagrange proved this result in 1771. Nevertheless, the fact that p divides
(p — D!+ Lis known as Wilson’s theorem. We now state this theorem in the form of a
congruence.

215
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Theorem 6.1. Wilson’s Theorem. Tf p is prime, then (p — D=1 (mod p).

Before proving Wilson’s theorem, we use an example to illastrate the idea behind
the proof.

Example 6.1, letp=7 Wehave(7—)I=61=1.2.3-4-5.6.We will rearrange
the factors in the product, grouping together pairs of inverses modulo 7. We note
that2-4=1(mod 7) and 3-5=1(mod 7). Hence, 6!=1-(2.4)- (3.5)-6=1.6=
—1 (mod 7). Thus, we have verified a special case of Wilson’s theorem. -«

We now use the technique illustrated in the example to prove Wilson’s theorem.

Proof. When p =2, wehave (p — D= 1=—1(mod 2). Hence, the theorem is true for
p = 2. Now let p be a prime greater than 2. Using Theorem 4.10, for each integer g with
1<g<p—1,thereisaninversea, 1 <a < p -1, with aa = 1 {mod p). By Theorem
4.11 the only positive integers less than p that are their own inverses are 1 and p — 1.
Therefore, we can group the integers from 2 to p — 2 into (p — 3)/2 pairs of integers,
with the product of each pair congruent to 1 modulo p. Hence, we have

2:3-- (p—3) - (p—2)=1(med p).
We multiply both sides of the this congruence by 1and p — 1to obtain
(p—D!=1-2-3---(p=3)p—-p—D=1-(p— D =—1(mod p).
This completes the proof. =
An interesting observation is that the converse of Wilson’s theorem is also true, as

the following theorem shows.

Theorem 6.2, If n is a positive integer with n > 2 such that (n — M= —1 (mod n),
then n is prime.

France at the invitation of Louis X VI, to join the French Academy. In France he had a distinguished
career in teaching and writing, He was a favorite of Marie Antoinette, but managed to win the favor of
the new regime that came into power after the French Revolution. Lagrange’s contributions to mathe-
matics include unifying the mathematical theory of mechanics. He made fundamental discoveries in
group theory and helped put calculus on a rigorous foundation. His contributions to number theory
include the first proof of Wilson’s theorem, and the result that every positive integer can be written as
the sum of four squares.

JOSEPH LOUIS LAGRANGE (1736-1813) was born in Italy and studied
physics and mathernatics at the University of Turin. Although he originally
planned to pursue a career in physics, Lagrange’s growing interest in mathemat-
ics led him to change course. At the age of 19, he was appointed as amathematics
professor at the Royal Artillery School in Turin. In 1766, he filled the post Euler
vacated af the Royal Academy of Berlin when Frederick the Great sought him
out. Lagrange directed the mathematics section of the Royal Academy for 20
years. In 1787, when his patron Frederick the Great died, Lagrange moved to
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Progf.  Assume that n is a composite integer and that (n — Y= —1 {mod ). Because
n is composite, we have n = ab, where 1 < g <n and 1 < b < n. Because g < n, we
know that @ | (n — 1)}, because a is one of the n — 1 numbers multiplied together to
form (n — 1)L Because (n — 1)! = —1 (mod ») it follows that | {n — D!+ 1). This
means, by Theorem 1.8, that a also divides (1 — 1!+ L. By Theorem 1.9, because
al@—Dland a | ((rn — D!+ 1), we conclude that [(n—DB!+D—-@m-DI=1
This is a contradiction, because g > 1. n

Wilson’s theorem can be used to demonstrate that a composite integer is not prime,
as Example 6.2 shows.

Example 6.2. Because (6 — 1)1 =5!1=120=0 (mod 6), Theorem 6.1 verifies the
obvious fact that 6 is not prime. <

As we can see, Wilson’s theorem and its converse give us a primality test, To
decide whether an integer n is prime, we determine whether (r — D= —1 (mod n).
Unfortunately, this is an impractical test because n — 2 multiplications modulo # are
needed to find (n — 1)1, requiring O (n (tog, 1)?) bit operations.

Fermat made many important discoveries in number theory, including the fact that
p divides a?~! — 1 whenever p is prime and « is an integer not divisible by p. He stated
this result in a letter to one of his mathematical correspondents, Frénicle de Bessy, in
1640. Fermat did not bother to enclose a proof with his letter, stating that he feared that
a proof would be too long. Unlike Fermat’s notorious last theorem, discussed in Chapter
13, there is little doubt that Fermat really knew how to prove this thearem (which is called
“Fermat’s little theorem” to distinguish it from his “last theorem”™). Leonhard Euler is
responsible for the first published proof, in 1736. Euler also generalized Fermat's little
theoren; we will explain how in Section 6.3.

Theorem 6.3. Fermat’s Little Theorem. 1f p is prime and a is a positive integer with
p ) a,then a?~!=1(mod p).

Proof. Consider the p — 1 integers a, 2a, . . ., {p — Da. None of these integers are
divisible by p, forif p | ja, thenby Lemma 3.4, p| j,becanse p f a. This is impossible,
because 1 < j < p -- 1. Furthermore, no two of the integers a,2a,...,(p — Da are
congruent modulo p. To see this, assume that ja = ka (mod p),where 1 < j <k =<
p — L. Then, by Corollary 4.4.1, because (a, p) = 1, we have J =k (mod p). This is
impossible, because j and & are positive integers less than p—1L

Because the integers a, 2a, . . ., {p — Da are a set of p — lintegers all incongruent
to 0, and no two are congruent modulo p, we know that the least positive residues of
a,2a,...,(p — 1)a, taken in some order, must be the integers 1,2,...,p— 1. As a
consequence, the product of the integers a, 2a, . . ., (p — Da is congruent modulo p to
the product of the first p — 1 positive integers. Hence,

a-2a---(p—Da=1-2-..(p— 1) (mod p).
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Therefore,
aP~Y(p — Hi=(p — D! (mod p).
Because ((p — 1)), p) = 1, using Corollary 4.4.1, we cancel (p — 1)! to obtain
a?~!'=1(mod p). .

We illustrate the ideas of the proof with an example.

Example 6.3. Let p=7anda =73. Then, 1- 3=3(mod7),2-3=6(mod7),3 3=
2(mod7),4-3=5(mod7),5-3=1(mod7),and 6-3= 4 (mod 7). Consequently,

132333 @53 -6-3=3-6-2-5-1-4(mod7),

sothat36-1-2-3.4.5-6=3.6-2.5.1-4 (mod 7). Hence, 3% - 6! = 6! (mod 7), and
therefore 3° = 1 (med 7). «

. Theorem 6.4. I p is prime and ¢ is a positive integer, then a? =a {mod p).

Proof. If p f a, by Fermat's little theorem we know that aP~ =1 (mod p). Multiplying
both sides of this congruence by a, we find that a? = a {mod p}. If p | a, then p | af
as well, so that @? = a = 0 (mod p). This finishes the proof, because af =g {mod p) if
p faandif p|a. ]

Finding the least positive residue of powers of integers is often required in num-
ber theory and its applications—especially cryptography, as we will see in Chapter 8,
Fermat’s little theorem is a useful tool in such computations, as the following example
shows.

Fxample 6.4, We can find the least positive residue of 3201 1odulo 11 with the help
of Fermat’s little theorem. We know that 310 = 1 (mod 11). Hence, 3% = (319)* . 3=
3 (mod 11). <

A useful application of Fermat’s little theorem is provided by the following result.

Theorem 6.5. If p is prime and a is an integer such that p [ a, then a?~2 is an inverse
of & modulo p. ’

Proof. If p } a, by Permat’s little theorem we have a caP? = aP~l =1 (mod p).

Hence, a?~2 is an inverse of @ modulo p. L

Example 6.5. By Theorem 6.5, we know that 2% = 512 = 6 (mod 11) is an inverse of
2 modulo 11 «

Theorem 6.5 gives us another way to solve linear congruences with respect to prime
moduli.
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Corollary 6.5.1. 1If @ and b are positive integers and p is prime with p [ a, then
the solutions of the linear congruence ax = b (mod p) are the integers x such that
x =aP™%p (mod p).

Proof.  Suppose that ax = b (mod p). Because p f a, we know from Theorem 6.5 that
aP~2 is an inverse of a {(mod p). Multiplying both sides of the original congruence by
a?~%, we have

aP2qx = aP~%p {mod p),
Hence,

x =aP"%h (mod p). =

The Pollard p — 1 Factorization Method

Fermat’s little theorem is the basis of a factorization method invented by J. M. Pollard in
1974. This method, known as the Pollard P — 1method, can find a nontrivial factor of an
integer # when n has a prime factor p such that the primes dividing p — 1 are relatively
small.

To see how this method works, suppose that we want to find a factor of the positive
integer 7. Furthermore, suppose that » has a prime factor p such that p — 1 divides
k!, where k is a positive integer. We want P — 1 to have only small prime factors, so
that there is such an integer & that is not too large. For example, if p = 2269, then
p— 1=2268 =237, so that p — 1 divides 9!, but no smaller value of the factorial
function.

The reason we want p — 1 to divide k!is so that we can apply Fermat’s little theorem.
By Fermat’s little theorem we know that 27! = 1 (mod p). Now, since p — 1 divides
k!, k= (p — 1)q for some integer g. Hence o

2M = 2W=Va = (210 = 19 — | (mod ) -

which implies that p divides 28! — 1. Now, let M be the least positive residue of 2]‘![— !
modulo n, so that M = (2¥' - 1) — it for some integer . We see that p divides M because
it divides both 2*' — 1 and n.

Now, to find a divisor of , we need only compute the greatest common divisor of
M and n, d = (M, n). This can be done rapidly using the Euclidean algorithm. For this
divisor d to be a nontrivial divisor, it is necessary that M not be (. This is the case when
n does not itself divide 2¥' — [, which is likely when » has large prime divisors.

To use this method, we must compute 28, where k is a positive integer. This can
be done efficiently because modular exponentiation can be done efficiently. To find the
least positive remainder of 2% modulo n, we set ry =2 and use the following sequence
of computations: ry = 1‘12 (modn), ry= p‘g (modn),...,n= rLI (mod n). We illustrate
this procedure in the following example.
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Example 6.6. To find 2% (mod 5, 157, 437), we perform the following sequence of
computations:

ry=r?=2%=4 (mod 5,157,437
ry=r3 =4 =64 (mod 5,157,437)
rq=rj = 64* = 1,304,905 (mod 5,157,437)
rs=r; = 1,304,905% = 404,913 (mod 5,157,437
rg=r =404,913% = 2,157,880 (mod 5,157,437)
ry=r] =2,157,880" = 4,879,227 (mod 5,157,437)
rg=rs=4.879227% = 4,379,778 (mod 5,157,437)
ro=rg = 4,379,778 = 4,381,440 (mod 5,157,437).
It follows that 2% = 4,381,440 (mod 5,157,437). «

The following example illustrates the use of the Pollard p — 1method to find a factor
of the integer 5,157,437.

Example 6.7. To factor 5,157,437 using the Pollard p — 1 method, we successively
find 7y, the least positive residue of 2 modulo 5,157,437, for k=1,2,3,..., as
was done in Example 6.6. We compute (r; — 1, 5,157,437) at each step. To find
a factor of 5,157,437 requires nine steps, because (rp — 1, 5,157,437y =1 for k =
1,2,3,4,5,6,7,8 (as the reader can verify), but (rg — 1, 5157437) = (4,381,439,
5,157,437) = 2269, It follows that 2269 is a divisor of 5,157,437, i

The Pollard p — 1 method does not always work. However, because nothing in the
method depends on the choice of 2 as the base, we can extend the method and find a factor
for more integers by using integers other than 2 as the base. In practice, the Pollard p — 1
method is used after trial divisions by small primes, but before the heavy artillery of such
methods as the quadratic sieve and the elliptic curve method.

6.1 Exercises

1. Show that 1014 1is divisible by 11, by grouping together pairs of inverses modulo 11
that oceur in 10!,

2. Show that 12! + 11is divisible by 13, by grouping together pairs of inverses modulo 13
that occur in 121

3, What is the remainder when 16! is divided by 197

4, What is the remainder when 51251 is divided by 317

5, Using Wilson's theorem, find the least positive residue of 8 - 9- 10 11 12 - 13 modulo 7.
6. What is the remainder when7-8-9-15- 16+ 17 -23- 24 - 25 - 43 is divided by 117
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. What is the remainder when 18! is divided by 4377
8. What is the remainder when 40! is divided by 17637
» What is the remainder when 5'® is divided by 7?
10,
11.
12.
13.
14.
15,

16.
17.
18.
19.

20

21.
22,
23,

24,
25.

26,
27.

28.
29,
30.
31.
32.

33,

What is the remainder when 62 js divided by 117

Using Fermat’s little theorem, find the least positive residue of 39999999 modulo 7.

Using Fermat’s httle theorem, find the least positive residue of 21900000 ynoauig 17,
10 _ 2 o

Show that 3" = 1 (mod 11%). PR

Using Fermat’s fittle theorem, find the last digit of the base 7 expansion of 319,

Using Fermat’s little theorem, find the solutions of the following linear congruences.
A 7x =12 (mod 17) b) 4x = 11 {med 19)

Show that if » is a composite integer with n #d, then {1 — I}! = 0 (maod n).
Show that if p is an odd prime, then 2(p — 3)1= —1 {mod p).

Show that if  is odd and 3 f ., then n? = 1 (mod 24).

Show that a'? - 1 is divisible by 35 whenever (a, 35) = 1.

Show that @® — 1is divisible by 168 whenever (a, 42) = 1.

Show that 42 | (17 — ) for all positive integers n.

Show that 30 | (1° — a1} for all positive integers n.

Show that 177! £2771 4 3p=1 4 .. () 0D = _{ (mod p) whenever p is
prime. (It has been conjectured that the converse of this is also true.)

Show that 17 + 27 + 37 + ... 4 (p — 1)? = 0 (mod p) when p is an odd prime.

Show that if p is prime and q and b are integers not divisible by p, with a” = b# (mod ),
then a? = b¥ (mod p?).

Use the Pollard p — 1 method to find a divisor of 689.

Use the Pollard p — 1 method to find a divisor of 7,331,117, {For this exercise, you will
need to use either a calculator or computational software.}

Show that if p and g are distinct primes, then p?—! + gP~'=1(mod pq).

Show that if p is prime and « is an integer, then pl@®+(p—Dla).

Show that if p is an odd prime, then 132 - - (p — 4)2(p — 2)2 = (—~ )P +D/2 (pod D).
Show that if p is prime and p = 3 (mod 4), then ((p — /2= £1 {mod p).

a) Let p be prime, and suppose that r is a positive integer less than p such that
(—1)"r!= —1(mod p). Show that (p—r+Dli=—1(mod p).

b) Using part (a), show that 61! = 631= —1 {mod 7.

Using Wilson's theorem, show that if p is a prime and p = 1 (mod 4), then the

congruence x? = —1(mod p) has fwo incongruent solutions given by x =

k((p — 1)/2)! (mod p).
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So

34

3s,

* 36,
37.

38.

39.

40.

41,

* 42,

43.

44,

45,
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. Show thatif pisaprime and 0 < k < p, then (p — Kk — DI'= (= D¥ (mod p).

Show that if » is an integer, then

n

=40 _[U=D]]

Pt i i

For which positive integers n is nt 4+ 4% prime?

Show that the pair of positive integers  and n + 2 are twin primes if and only if
4((n — DI+ D+ n=0(maednl +2)), where n # 1.

Show that if the positive integers n and n +k, where n > k and k is an even
positive integer, are both prime, then kH:(n — BI+ D +ak! - DG — D=
0 (mod n(m + £)).

Show that if p is prime, then (2; ) =2 (mod p).

Exercise 74 of Section 3.5 shows that if p is prime and k is a positive integer less than
p, then the binomial coefficient i is divisible by p. Use this fact and the binomial

theoren to show that if a and b are integers, then (a + b)? = a” + b¥ (mod p).

Prove Fermat’s little theorem by mathematical induction. (Hint: In the induction step,
use Exercise 40 to obtain a congruence for (@ + 1)7.)

Using Exercise 30 of Section 4.3, prove Gauss’s generalization of Wilson's theorem,
namely that the product of all the positive integers less than m that are relatively prime
to m is congruent to 1 (mod m), unless m =4, pt,or 2p', where p is an odd prime and
t is a positive integer, in which case it is congruent to —1 (mod m}.

A deck of cards is shuffled by cutting the deck into two piles of 26 cards, Then, the new

deck is formed by alternating cards from the two piles, starting with the bottorn pile.

a) Show that if a card begins in the cth position in the deck, it will be in the bth position
in the new deck, where b = 2¢ (mod 53y and 1 =& = 32.

b) Determine the number of shufftes of the type described above that are needed to return
the deck of cards to its originat order.

Let p be prime and let @ be a positive integer not divisible by p. We define the Fermat
quotient q,(a) by q,(a) = (a p=1__ 1)/ p. Show that if o and b are positive integers not
divisible by the prime p, then g,(ab) =g (a} + ¢ #(0) (mod p).

Let p be prime and letay, a, . . ., a, and by, by, .-, b, be complete systems of residues
moduto p. Show thata by, azby, . . ., a,by isnotacomplete system of residues modulo p.

% 46. Show that if n is a positive integer with n > 2, then n does not divide 2" — 1.
* 47, Let p be an odd prime. Show that (p — P = —1 (mod p").
48. Show that if p is a prime with p > 5, then (p — D!+ L has at least two different prime

49,

divisors.

Show that if a and 7 are relatively prime integers with n > 1, then n is prime if and
only if {(x — a)” and x" — a are congruent medulo 7 as polynomials. (Recall from the
preamble to Exercise 40 in Section 4.1 that two polynomials are congruent modulo n as
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polynomials if for each power of x the coefficients of that power in the polynomials are
congruent modulo 1) (The proof of Agrawal, Kayal, and Saxena [AgKaSa02] that there
is a polynomial-time algorithm for determining whether an integer is prime begins with
this result.)

Computational and Programming Exercises
Computations and Explorations

Using a computation programn such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. A Wilson prime is a prime p for which (p — 1) = -1 (mod p?). Find alt Wilson primes
less than 10,000.

2. Find all primes p less than 10,000 for which 27! = 1 {mod 3.

3. Find a factor of each of several different odd integers of your choice using the Pollard
p — 1 method.

4. Verify the conjecture that 1" 14271 4.3~ .| 4 (r— =D #* —1{modn)ifnis
composite, for as many integers i as you can,
Programming Projects
Write programs using Maple, Mathematica, or a language of your choice to do the following,
1. Find all Wilson primes less than a given positive integer ».
2. Find the primes p less than a given positive integer # for which 271 = 1 (mod p?).
3. Solve linear congruences with prime moduli via Fermat's little theorem.

4. Factor a given positive integer » using the Pollard p — | method.

Pseudoprimes

Fermat's little theorem tells us that if » is prime and b s any integer, then b* = b {med n},
Consequently, if we can find an integer b such that " # b (mod »), then we know that
r is composite,

Example 6.8. We can show that 63 is not prime by observing that

283 =250 2% = (261923 = 641093 = 23 = 8 £ 2 (mod 63). <

Using Fermat’s little theorem, we can show that an integer is composite. It would be
even more useful if it also provided a way to show that an integer is prime. Itis commonly
reported that the ancient Chinese believed that if 2" = 2 (mod ), then # must be prime.
This statement is true for 1 < n < 340. Unfortunately, the converse of Fermat’s little
theorern is not true, as the following example, which was discovered by Sarrus in 1919,
shows.
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Example 6.9. Let n=341=11-31. By Fermat's little theorem, we see that
210 = | (mod 11), 50 that 23%0 = (219)34 = | (mod 11). Also, 2°% = (2568 = (32)%8 =
1 (mod 31). Hence, by Corollary 4.8.1, we have 2340 = { (mod 341). By multiplying
both sides of this congruence by 2, we have 234! = 2 (mod 341), even though 341 is not
prime. «

Examples such as this lead to the following definition.

Definition. Let & be a positive integer. If # is a composite positive integer and b =
b (mod n), then n is called a psendoprime to the base b '

Note that if (b, n) = 1, then the congruence b" = b (mod n) is equivalent to the
congruence »*~! = { (mod n). To see this, note that by Corollary 4.4.1 we can divide both
sides of the first congruence by b, because (b,n) = 1, to obtain the second congruence.
By part (iii) of Theorem 4.3, we can multiply both sides of the second congruence by b
to obtain the first. We will often use this equivalent condition.

Example 6.10. The integers 341 = 11.31,561=3-11-17, and 645=3.5-43 are
pseudoprimes to the base 2, since it is easily verified that 2340 — 1 (mod 341), 250 =
1 (mod 561), and 2% = 1 (mod 645). «

If there are relatively few pseudoprimes to the base b, then checking to see whether
the congruence b" = b (mod n) holds is a useful test; only a small fraction of composite
numbers pass this test. In fact, there are far fewer pseudoprimes to the base b not
exceeding a specified bound than prime numbers not exceeding that bound. In particular,
there are 455,052,511 primes, but only 14,884 pseudoprimes to the base 2, less than 10'C,
Although pseudoprimes to any given base are rare, there are, nevertheless, infinitely
many pseudoprimes to any given base. We will prove this for the base 2. The following
lemma is useful in the proof.

Lemma 6.1. Ifd and n are positive integers such that d divides n, then 24 — 1 divides
27— L

An Historical Inaccuracy , :
Apparently, the story that the ancient Chinese believed that # is prime if 2" = 2 (mod #) is *
due to a mistaken translation and an error by a nineteenth-century Chinese mathematician,
in 1897, J. H. Jeans reported that this statement dates “from the time of Confucius,” which
seems to be the result of an erroneous transfation from the book The Nine Chapters of
Mathematieal Art. In 1869, Alexander Wade published an article, “A Chinese theorem,” in
the journal Notes and Queries on China, crediting the mathematician Li Shan-Lan (1811~
1882) for this “theorem.” Li leamned that this result was false, but the error was perpetuated |
by later authors. These historical details come from a letter from Chinese mathematician
Man-Keung Siu to Paulo Ribenboim (see [Ri96] for more information).
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Proof. Given that d [ n, there is a positive integer ¢ with df = n. By setting x = 29
in the identity X' —1=(x — D'+ 52+ ... £ 1) we find that 2* — | =
24 = D@D 324D .. 24 | 1) Consequently, we have (24 — e —1.

H

We can now prove that there are infinitely many pseudoprimes to the base 2.

Theorem 6.6. There are infinitely many pseudoprimes to the base 2.

Progf.  Wewill show thatif z is an odd pseudoprime to the base 2, then m = 2% — 1isalso
an odd pseudoprime to the base 2. Because we have at least one odd pseudoprime fo the
base 2, namely ng = 341, we will be able to construct infinitely many cdd pseudoprimes
to the base 2 by taking ny = 341land ng ;= 2" — 1fork =0,1,2,3, . ... These integers
are all different, because ng <ny <ny < -+ - < < Mpgg <o

To continue the proof, let # be an odd pseudoprime to the base 2, so that # is
composite and 2" =1 {mod n). Because n is composite, wehave n = dt, with 1 < d <
nand 1 <t <n, We will show that s = 2" — 1 is also pseudoprime, by first showing
that it is composite, and then by showing that 2" ! = 1 (mod m).

To see that 1 is composite, we use Lemma 6.1 to note that 24— 1 (2" = 1) = m.
To show that 2”~! =] (mod m), note that because 2% = 2 (mod #), there is an integer
k with 2" —2 = kn. Hence, 2"~ =2%"-2 = 2" By Lemma 6.1, it follows that m =
@' = D" -1 =2""L— 1. Hence, 2"! —1=0(mod m), so that 2"~} =
1 (mod m). We conclude that m is also a pseudoprime to the base 2. [

If we want to know whether an integer n is prime, and we find that 2" 1= 1 (mod n),
we know that # is either prime or a pseudoprime to the base 2. One follow-up approach is
to test n with other bases. That is, we check to see whether "~ 1=1 {mod »n) for varfous
positive integers b. If we find any values of b with (b, n) = 1 and 5™~ # 1 {mod n), then
we know that n is composite.

Example 6.11.  We have seen that 341 is a pseudoprime to the base 2. Because
77 =343 =2 (mod 341)
and
210 = 1024 = 1 (mod 341),

we have

7340 — (73)1137 = 21[37 — (2[0)11 . 23 .7
=8-7=56%1(mod 341).

Hence, by the contrapositive of Fermat’s little theorem, we see that 341 is composite,
because 740 £ 1 (nod 341). <
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Carmichael Numbers

Unfortunately, there are composite integers » that cannot be shown to be composite using
the above approach, because there are integers that are pseudoprimes to every base, that
is, there are composite integers n such that p"Y =1 (mod n), for all b with (b, n) = 1.
This leads to the following definition.

Definition. A composite integer » that satisfies p"1 =1 (mod ») for all positive in-
tegers b with (b, ) = 1 is called a Carmichael msmber (after Roberi Carmichael, who
studied them in the early part of the twentieth century) or an absolute psendoprime.

Example 6.12. The integer 561 = 3- 11- 17 is a Carmichael number. To see this,
note that if (b, 561) = 1, then (b, 3} = (b, 11) = (b, 17) = L. Hence, from PFermat’s lit-
tle theorem, we have b2 = 1 (mod 3),b'0 = 1 (mod 11), and b6 = 1 (mod 17). Conse-
quently, 550 = (52280 = 1 (mod 3), b5 = (10)% = 1 (mod 11), and b5 = ('9)> =
1 {mod 17). Therefore, by Corollary 4.8.1, 5°%° = I (mod 561) for all b with (b, n) = L.

>

In 1912, Carmichael conjectured that there are infinitely many Carmichael numbers.
It took 80 years to resolve this conjecture, In 1992, Alford, Granville, and Pomerance
showed that Carmichael was correct.! Because of the complicated, nonelementary nature
of their proof, we will not describe it here. However, we will prove one of the key
ingredients, a theorem that can be used to find Carmichael numbers.

Theorem 6.7. 1fn=gq; . ..4q;, where the g; are distinct primes that satisly (g; — D |
(n — 1) for all j and k > 2, then # is a Carmichael number.

Proof Let b be a positive integer with (b,n) = L. Then (b,q;) = 1for j=1,2,..., k
and hence, by Fermat’s little theorem, yiml=1 {mod g j) for j =1,2,...,k. Because

i— Dl 1)for eachinteger j =1,2,. .., k, there are integers ¢; with #;(g; — =
1 — 1. Hence, for each j, we know that b” 1o =9~V =1 (mod g;). Therefore, by

Corollary 4.8.1, we see that »*~! = 1 (mod n), and we conclude that n is a Carmichael
number. =

Uin particulas, they showed that C(x), the number of Carmichael numbers not exceeding x, satisfies the

inequality C(x) > x*7 for sufficiently large numbers x.

ROBERT DANIEL CARMICHAEL (1879-1967) was born in Goodwater, Alabama. He
received his B.A. from Lineville College in 1898 and his Ph.D. in 1911 from Princeton Uni-
versity. Carmichael tanght at Indiana University from 1911 to 1915, and at the University of
Tifinois from 1915 until 1947. His thesis, written under the direction of G. D. Birkhoff, was
considered the first significant American contribution to differential equations. Carmichaet
worked in a wide range of areas, including real analysis, differential equations, mathemat-
ical physics, group theory, and number theory.
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Example 6.13. Theorem 6.7 shows that 6601 =7 .23 . 4] is a Carmichael number,
because 7,23, and 41 are all prime, 6 = (7 — 1} | 6600, 22 = (23 — 1} | 6600, and 40 =
(41— 1) | 6600, «

The converse of Theorem 6.7 is also true, that is, all Carmichael numbers are of the
form qyq, - - - g3, where the g ; are distinct primes and (g =D (n—1forall j. We
will prove this fact in Chapter 9.

By the way, we can show that although there are only 43 Carmichael numbers not
exceeding 10, there are 105,212 of them not exceeding 1015,

Miller’s Test

Once the congmence l= (mod »n), where » is an odd integer, has been verified,
another possible approach is to consider the least positive residue of b"~D/2 modulo
n. We note that if x = bO—0/2 thep y2 = pr-12 {mod n). If r is prime, by Theorem
4.11 we know that either x = 1 or x = —1 (mod »). Consequently, once we have found
that p* 1= 1 {mod n), we can check to see whether b®—D/2 = 4| {mod n). If this
congruence does not hold, then we know that n is composite.

Example 6.14. Let b =5 and let n = 561, the smallest Carmichael number, We find
that 581-D/2 — §280 = 67 (mod 561). Hence, 561 is composite, «

To continue developing primality tests, we need the following definitions.

Definition. Let n be a positive integer with 7 > 2 and n — 1 = 25t, where 5 is a
nonnegative integer and ¢ is an odd positive integer. We say that n passes Miller’s test for
the base b if either &' = 1 (mod n) or b?’* = —| {mod #) for some j with0 < j <g — 1,

The following example shows that 2047 passes Miller’s test for the base 2.
Example 6.15. Let n=2047=23.89. Then 2204 _ (211)186 . (304g)186 —
1 {mod 2047), so that 2047 is a pseudoprime (o the base 2. Because 22346/2 .- 91023 _
(21193 = (2048)*® = | (mod 2047), 2047 passes Miller’s test for the base 2. «

We now show that if z is prime, then n passes Miller’s test for all bases b with 1 rb

Theorem 6.8. Ifn is prime and b is a positive integer withn f b, then » passes Miller’s
test for the base .

Progf.  Letn — 1 =21, where s is a nonnegative integer and ¢ is an odd positive integer.

Letx, = b0=0/2° — p2 % oo 0,1,2,...,s. Because  is prime, Fermat’s little theo-
rem tells us that xo = "~ = 1 (mod n). By Theorem 4.11, because x}= (0022 =
Xg = 1 (mod n), either x; = —1 (mod ») or xy=1{mod n). If x; = 1 (mod n), because
x% = x = 1{mod n), either x, = —1 (mod n) or X7 = H{(mod n). In general, if we have
found thatxo = x = xy = = x; = 1 (mod n), with k < s, then, because x,%“ =i =

1 (mod ), we know that either x;, +1=—1{mod n) or x| = 1 (mod n).
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Continuing this procedure for k= 1,2, . . ., s, we find that either x; = 1 {mod n), or
x;, = —1 (mod n) for some integer k, with 0 <k <. Hence, n passes Miller’s test for
the base b. n

If the positive integer i passes Miller’s test for the base b, then either b* = 1 (mod r)
or ¥ = —1 (mod n) for some j with0 < j <s — 1, wheren — 1 =2t and ¢ is odd.

In either case, we have b" ! = I (mod rn), because prl = (sz’)zw for j =
0,1,2,...,s, so that a composite integer » that passes Miller’s test for the base b is
automatically a pseudoprime to the base b. With this observation, we are led to the
following definition.

Definition. If 1 is composite and passes Miller's test for the base b, then we say nis a
strong pseudoprime to the base b,

Example 6.16. By Example 6.15, we see that 2047 is a strong pseudoprime to the
base 2. -«

Although strong pseudoprimes are exceedingly rare, there are still infinitely many
of them. We demonstrate this for the base 2 with the following theorem.

Theorem 6.9, There are infinitely many strong pseudoprimes to the base 2.

Proof. We shall show that if » is a pseudoprime to the base 2, then N=2"-1lisa
strong pseudoprime to the base 2.

Let n be an odd integer that is a pseudoprime to the base 2. Hence, n is composite,
and 2"~ 1= 1 (mod ). From this congruence, we see that 271 _ 1 = nk for some integer
k; furthermore, & must be odd. We have

N-1=2"—2=20""1-=2"k;
this is the factorization of N — 1 into an odd integer and a power of 2.
We now note that
20 =D/T = 97k — 2"y = 1 (mod N,

because 2" = (2" — 1) + 1= N + 1 = 1 (mod N). This demonstrates that N passes
Miller’s test. ’

In the proof of Lemma 6.1, we showed that if » is composite, then N = 20 -1
also is composite. Hence, N passes Miller's test and is composite, so that N is a strong
pseudoprime to the base 2. Because every pseudoprime n to the base 2 yields a strong
pseudoprime 2" — 1 to the base 2, and because there are infinitely many pseudoprimes to
the base 2, we conclude that there are infinitely many strong pseudoprimes to the base 2.

|

The following observations are useful in combination with Miller’s test for checking
the primality of relatively small integers. The smallest odd strong pseudoprime to the base
2 is 2047, so that if n < 2047, n is odd, and n passes Miller’s test to the base 2, then n
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is prime. Likewise, 1,373,653 is the smallest odd strong pseudoprime to both the bases
2 and 3, giving us a primality test for integers less than 1,373,653. The smallest odd
strong pseudoprime to the bases 2, 3, and S is 25,326,001, and the smatlest odd strong
pseudoprime to all the bases 2, 3, 5,and 7 is 3,215,031,751. Furthermore, there are no
other strong pseudoprimes to all these bases that are less than 25 . 10°. (The reader should
verify these statements.) This leads vs to a primality test for integers less than 25 - 10°,
An odd integer n is prime if 1 < 25.10%, n passes Miller’s test for the bases 2, 3, 5, and
7, and n 3 3,215,031,751.

Computations show that there are only 101 integers less than 10'2 that are strong
pseudoprimes to the bases 2, 3, and 5 simultaneously. Only 9 of these are also strong
pseudoprimes to the base 7, and none of these is a strong pseudoprime to the base
11. The smallest strong pseudoprime to the bases 2,3,5,7, and 11 simultaneously is
2,152,302,898,747. Therefore, if an odd integer » is prime and s < 2,152,302,898,747,
then n is prime if it passes Miller’s test for the bases 2, 3, 5, 7, and 11, If we want to
test even bigger integers for primality in this way, we can use the observation that no
positive integer less than 341,550,071,728,321 is a strong pseudoprime to the bases 2,
3, 5,7, 11, 13, and 17. A positive odd integer not exceeding this number is prime if it
passes Miller’s test for the seven primes, 2,3, 5,7, 11, 13, and 17.

There is no analogue to a Carmichael number for strong pseudoprimes, This is a
consequence of the following theorem.

Theorem 6.10. If  is an odd composite positive integer, then n passes Miller's test for
atmost (n — I)/4 bases bwith1<bh <pn— |

We prove Theorem 6.10 in Chapter 9. Note that Theorem 6.10 tells us that if
passes Miller’s tests for more than (n — 1}/4 bases less than », then n must be prime.
However, this is a rather lengthy way to show that a positive integer » is prime, worse
than performing trial divisions, Miller’s test does give an interesting and quick way of
showing that an integer n is “probably prime.” To see this, take at random an integer b
with 1 = b <n — 1 {we will see how o make this “random” choice in Chapter 10). From
Theorem 6.10, we see that if » is composite, the probability that » passes Miller’s test for
the base b is less than 1/4. If we pick k different bases less than 1 and perform Miiler’s
tests for each of these bases, we are led to the following result,

Theorem 6.11. Rabin’s Probabilistic Primality Test, Let n be a positive integer, Pick
k different positive integers less than n and perform Miller’s test on # for each of these
bases. If n is composite, the probability that n passes all k tests is less than (1/4*,

Let n be a composite positive integer. Using Rabin’s probabilistic primality test, if
we pick 100 different integers at random between 1 and » and perform Miller’s test for
each of these 100 bases, then the probability that n passes all the tests is less than 1069,
an extremely small number. In fact, it may be more likely that a computer error was made
than that a composite integer passes all 100 tests. Using Rabin’s primality test does not
definitely prove that an integer n that passes some large number of tests is prime, but
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does give extremely strong, indeed almost overwhelming, evidence that the integer is
prime.

There is a famous conjecture in analytic number theory called the generalized
Riemann hypothesis, which is a statement about the famous Riemann zeta function,
named after the German mathematician Georg Friedrich Bernhard Riemann, which is
discussed in Section 3.2. The following conjecture is a consequence of this hypothesis.

Conjecture 6.1. For every composite positive integer n, there is a base b, with b <
2(log, :1)2, such that n fails Mitler’s test for the base b. =

If this conjecture is true, as many number theorists helieve, the following result
provides a rapid primality test.

Theorem 6.12. If the generalized Riemann hypothesis is valid, then there is an algo-
rithm to determine whether a positive integer n is prime using O (({log; 1)7) bit operations.

Proof. Lethbeapositive integer less thann. To perform Miller’s test for the base b onn
takes O((log, 1)?) bit operations, because this test requires that we perform no more than
log, » modular exponentiations, each using O{((log, b)) bit operations, Assume that the
generalized Riemann hypothesis is true. If 71 is composite, then by Conjecture 6.1, there
is a base b with 1 < b < 2(log, n)? such that 1 fails Miller’s test for b. To discover this
b requires less than O ((log, n)%) - 0 ((og; 7)%) = O ((log, n)°) bit operations. Hence,
using O{(log, 1)) bit operations, we can determine whether n is composite or prime,

|

The important point about Rabin’s probabilistic primality test and Theorem 6.12
is that both results indicate that it is possible to check an integer 1 for primality using
only G((log, r)*) bit operations, where & is a positive integer. (Also, the recent result of
Agrawal, Kayal, and Saxena [AgKaSa02] shows that there is a deterministic test using
O ((log, n)¥) bit operations.) This contrasts strongly with the problem of factoring.
The best algorithm known for factoring an integer requires a number of bit operations

x

fundamental contributions to geometry, mathematical physics, and analysis. He wrote only one paper
on number theory, which was eight pages long, but this paper has had tremendous impact. Riemann
died of tuberculosis at the early age of 39.

GEORG FRIEDRICH BERNHARD RIEMANN (1826-1866), the son of a
minister, was born in Breselenz, Germany. His elementary education came from
his father. After completing his secondary education, he entered Gotiingen Uni-
versity to study theology. However, he also attended lectures on mathematics.
After receiving the approval of his father to concentrate on mathematics, Rie-
mann transfered to Berlin University where he studied under several prominent
mathematicians, including Dirichlet and Jacobi. He subsequently returned to
Gottingen where he obtained his Ph.D.

Riemann was one of the most imaginative and creative mathematicians of all time. He made
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exponential in the square root of the logarithm of the number of bits in the integer being
factored, whereas primality testing seems to require only a number of bit operations
less than a polynomial in the number of bits of the integer tested. We capitalize on this
difference by presenting a recently invented cipher system in Chapter 8,

6.2 Exercises

1.
2
3

10.

11.

12,
13.
14.
15

Show that 91 is a pseudoprime to the base 3.
Show that 45 is a pseudoprime to the bases 17 and 19.

Show that the even integer n = 161,038 = 2 . 73. 1103 satisfies the congruence 2" =
2 (mod n). The integer 161,038 is the smallest even pseudoprime to the base 2.

. Show that every odd composite integer is a pseudoprime to both the base 1 and the

base —1.

- Show that if # is an odd composite integer and 71 is a pseudoprime to the base a, then n

is a pseudoprime to the base n — q.

. Show that if n = (¢%” — 1)/(a? — 1), where a is an integer, a > 1, and p is an odd prime

not dividing a{a? — 1), then n is a pseudoprime to the base a. Conclude that there are
infinitely many pseudoprimes to any base a. (Hint: To establish that a"—! = 1 (mod n),
show that 2p | (1 - 1), and demonstrate that 2% = 1 (mod n).)

+ Show that every composite Fermat number F,, = 2" 4 1 is a pseudoprime to the

base 2.

» Show that if p is prime and 27 — 1 is composite, then 27 — 1 is a pseudoprime to the

base 2.

. Show that it » is a pseudoprime to the bases a and &, then » is also a pseudoprime to the

b_ase ab.

Suppose that g and » are relatively prime positive integers. Show that if # is a pseudo-
prime to the base g, then » is a pseudoprime to the base a, where @ is an inverse of a
moduloe #.

a) Show thatifnisa pseudoprime to the base a, but not a pseudoprime to the base b,
whete (a,n) = (b,n) = 1, then n is not a pseudoprime to the base ab.

b) Show that if there is an integer b with (b, n) = 1 such that » is not a pseudoprime to
the base b, then n is a pseudoprime to less than or equal to ¢ (n) different bases a
with 1 < a < n, where ¢(n)} is the number of positive integers not exceeding » that are
relatively prime to n. (Hint: Show that the sets ay, dg,. .. .4 and bay, ba,, . . ., ba,
have no common elements, where a;, a5, . . ., a, are the bases less than » to which n
is a pseudoprime.)

Show that 25 is a strong pseudoprime to the base 7.

Show that 1387 is & pseudoprime, but not a strong pseudoprime, to the hase 2.
Show that 1,373,653 is a strong pseudoprime to both bases 2 and 3.

Show that 25,326,001 is a strong pseudoprime to bases 2, 3, and 5.
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16.

17.

18.

15.

* 20,
21.

Show that the following integers are Carmichael numbers.

2) 2821 =7-13.31

b) 10,585 =5.29-73

¢) 29,341 =13.37-61

d) 314,821 = 13- 61-397

e) 278,545 =5.17-29. 113

£) 172,081 =7-13-31-61

£) 564,651,361 = 43 - 3361 - 3907

Find a Carmichael number of the form 7 - 23 - g, where ¢ is an odd prime other than
g = 41, or show that there are no others. :

a) Show that every integer of the form (6m + D{12m + D{18m + 1), where m is
a positive integer such that 6m + 1, 12m + 1, and 18m + 1 are all primes, is a
Carmichael number.

b) Conclude from part (a) that 1729 = 7. 13 - 19; 294,409 == 37 - 73 . 109; 56,052,361 =
211-421-631; 118,901,521 = 271- 541 - 811; and 172,947,529 =307 - 613 - 919 are
Carmichael numbers,

The smallest Carmichael number with six prime factors is 5-19.23.29.37- 137 =
321,197,185. Verify that this number is a Carmichael number.

Show that if n is a Carmichael number, then » is square-free.

Show that if » is a positive integer with # = 3 (mod 4), then Miller’s test takes
O{{log, n)?) bit operations.

6.2 Computational and Programming Exercises

Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
_carry out the following computations and explorations.

1.
2.

Determine for which positive integers n, n < 100, the integer n - 2" — 1is prime.

Find as many Carmichael numbers of the form (6m + 1)(12m + 1)(18n + 1), where
6m + 1, 12m - 1, and 18mn 4 1 are all prime, as you can.

. Find as many even pseudoprimes to the base 2 that are the product of three primes as

you can. Do you think that there are infinitely many?

. The integers of the form n - 2% 4 1, where # is a positive integer greater than 1, are called

Cullen numbers. Can you find a prime Cullen number?

Programming Projects

Write programs using Maple, Mathematica, or a language of your choice to do the following.

1.

Given a positive integer n, determine whether n satisfies the congruence b=
1 (mod n), where b is a positive integer less than n; if it does, then n is either a prime or
a psendoprime to the base b.
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2. Given a positive integer », determine whether n passes Miller’s test to the base b; if it
does, then s either prime or a strong pseudoprime to the base b.

3. Perform a primality test for integers less than 25 - 10° based on Miller’s test for the bases
2,3,5, and 7. (Use the remarks that follow Theorem 6.9.)

4. Perform a primality test for integers less than 2,152,302,898,747 based on Miller’s test
for the bases 2, 3, 5,7, and 11. (Use the remarks that follow Theorem 6.9.)

5. Perform a primality test for integers less than 341,550,071,728,321 based on Miller’s
test for the bases 2, 3, 5,7, 11, 13, and 17, {Use the remarks that follow Theorem 6.9)

6. Given an odd positive integer n, determine whether passes Rabin’s probabilistic
primality test,

7. Given a positive integer #, find all Carmichael numbers less than a given integer n.

6.3 Euler’s Theorem

Fermat’s little theorem tells us how to work with certain congruences involving exponents
when the modulus is a prime. How do we work with the corresponding congruences
modulo a composite integer?

For this purpose, we would like to establish a congruence analogous to that provided

by Fermat’s little theorem for composite integers. As mentioned in Section 6.1, the great

@i Swiss mathematician Leonhard Euler published a proof of Fermat’s little theorem in
1736. In 1760, Euler managed to find a natural generalization of the congruence in
Fermat’s little theorem that holds for composite integers. Before introducing this result,

we need to define a special counting function (introduced by Euler) used in the theorem.

Definition, Let n be a positive integer. The Euler phi-funcrion ¢ (m) is defined to be
the number of positive integers not exceeding n that are relatively prime to .

In Table 6.1, we display the values of ¢(n) for 1 <n < 12. The values of @ (n) for
I=n =< 100 are given in Table 2 of Appendix E,

n i 203456 |7 8]%9 10 11 12
@ (i} 1 1 2121472 16l1l4ai6]|4 !4

Table 6.1 The values of Euler’s phi-function forl<n<12

In Chapter 7, we study the Euler phi-function further. In this section, we use the phi-
function to give an analogue of Fermat’s little theorem for composite moduli, To do this,
we need to lay some groundwork.

Definition. A reduced residue system modulo n is a set of ¢(n) integers such that each
element of the set is relatively prime to #, and no two different elements of the set are
congruent modulo x.
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Example 6.17. The set 1,3, 5,7 is a reduced residue system modulo 8. The set
—3,—1,1, 3is also such a set, «

We will need the following theorem about reduced residue systems.

Theorem 6.13. Ifry,ry,. .., 7y is a reduced residue system modulo #, andifaisa
positive integer with (a, 1) = 1, then the set ary, ary, . . ., arpen is also a reduced residue
system modulo 7.

Proof. Toshow that each integer ar; is relatively prime to n, we assume that (ar;, n) >
1. Then, there is a prime divisor p of (ar;, n). Hence, either p | a or p | r;. Thus, we have
either p | a and p | n,or p | r; and p | n. However, we cannot have both p | #; and p | n,
because r; is a member of a reduced residue system modulo 7, and both p | @ and p [ »
cannot hold because (a,n) = 1. Hence, we can conclude that ar; and n are relatively
prime for j =1,2,...,¢(1).

J
ar;, (mod n), where j and k are distinct positive integers with 1 < j < ¢(n) and 1 <

k < ¢ (n). Because (a, n) = 1, by Corollary 4.4.1 we see that r; =ry {mod n). Thisis a
contradiction, because r j and r;, come from the original set of reduced residues modulo

To demonstrate that no two ar; are congruent modulo #, we assume that ar; =

n, so that r # r;. (mod ). n

We illustrate the use of Theorem 6.13 by the following example.

LEONHARD EULER (1707—1783) was the son of a minister from the vicinity
of Basel, Switzerland, who, besides theology, had also studied matheratics. At
13, Euler entered the University of Basel with the aim of pursuing a career in
theology, as his father wished. At the university, Euler was tutored in mathemat-
ics by Johann Bernoulli, of the famous Bernoulli famity of mathematicians, and
becane friends with Johann's sons Nicklaus and Daniel. His interest in math-
ematics led him to abandon his plans to follow in his father’s footsteps. Euler
obtained his master’s degree in phitosophy at the age of 16. In 1727, Peter the
Great invited Euler to join the Imperial Academy in St. Petersburg, at the insistence of Nicklaus and
Daniel Bernoulti, who had entered the academy in 1725 when it was founded. Euler spent the years
1727-1741 and 1766-1783 at the Imperial Academy. He spent the interval 1741-1766 at the Royal
Academy of Berlin, Euler was incredibly prolific; he wrote more than 700 books and papers, and he
left so much unpublished work that the Imperial Academy did not finish publication of Euler’s work
for 47 years after his death. During his life, his papers accumulated so rapidly that he kept a pile of
papers to be published for the academy. They published the top papers in the pile first, so that later
results were published before results they superseded or depended on. Euler was blind for the last
17 years of his life, but had & fantastic memory, so that his blindness did not deter his mathematical
output. He also had 13 children, and was able to continue his research while a child or two bounced
on his knees. The publication of the collected works and letters of Euler, the Opera Omnia, by the
Swiss Academy of Science will require more than 85 large volumes, of which 76 have aleady been
published (as of late 1999).
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Example 6.18. The set 1,3, 5,7 is a reduced residue system modulo 8. Because
(3, 8y = 1, from Theorem 6.13, the set 3 - 1=3,3.3=9,3.5= 15,3 7=2lisalsca
reduced residue system modulo 8. <

We now state Euler's theorem.

Theorem 6.14. Euler’s Theorem. Tfm is a positive integer and a is an integer with
(a,m) =1, then a®*™ = { (mod m).

Before we prove Euler's theorem, we illustrate the idea behind the proof with an
example,

Example 6.19. Weknow that both the sets 1,3,5,7and3.1,3.3,3-5,3. 7arereduced
residue systemns modulo 8. Hence, they have the same least positive residues modulo 8.
Therefore,

G-D-(3-3-(3-5-37N=1-3.5-T(mod8),
and
3'.1-3.5.7=1-3.5.7 (mod 8).
Because (1-3.5. 7, 8) = 1, we conclude that

3*=37® = 1 (mod 8). «

We now use the ideas illustrated by this example to prove Euler’s theorem,

Proaf. Letryra,. .., Ts(m) denote the reduced residue system made up of the positive
integers not exceeding m that are relatively prime to m. By Theorem 6.13, because
(a,m)=1,thesetar,ar,,.. ., arg () is also areduced residue system modulo m. Hence,
the least positive residues of ary, ary, . . . + QT () TUst be the integers ry, ry, . . ., T ()
in some order. Consequently, if we multiply together all terms in each of these reduced
residue systems, we obtain

ararg - - - ar'¢(m) =rifg-- Fé(m) (mod f?l).

Thus,

@iy vy =y g (mod m),

Because (ryry « - - rggpy, m) = 1, from Corollary 4.4.1, we can conclude that ¢¢™) =
1 {mod m). "

We can use Euler’s theorem to find inverses modulo m. If @ and m are relatively
prime, we know that

a-a®e-l o geim g {mod m).

Hence, a®™ =1 is an inverse of @ modulo .
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Example 6.20. We know that 2¢6®~1 — 261 — 25 =32 = 5 (mod 9) is an inverse of
2 modulo 9. <

‘We can solve linear congruences using this observation. To solve ax = b (mod m),
where (a, m) = 1, we multiply both sides of this congruence by a®®)~! to obtain

a®=lgy = g®~1p (mod m).

Therefore, the solutions are those integers x such that x = a®® =15 (mod m).

Example 6.21. The solutions of 3x =7 (mod 10) are given by x =3?00-1.7=
33,7 =9 (mod 10), because ¢ (10) = 4. 4

6.3 Exercises

1. Find a reduced residue system modulo each of the following integers.
a6 b9 o100 dyid eyle )17
2. Find a reduced residue system modulo 2™, where m is a positive integer.

3. Showthatifc), ¢y, . . ., Cp(my 5 areduced residue system modulo m, where is a positive
integer with m # 2, then ¢ + o3 + - - - + €y = 0 (mod m).

4. Show that if a and m are positive integers with (a,m) = (@ — L,m)=1,then 1+a +
a2 +. .. +a®™M-1=0 (modm). :

S, Find the last digit of the decimal expansion of 310,

6. Find the last digit of the decimal expansion of 77999,

7. Use Euler's theorem to find the Ieast positive residue of 3% moduld 35.
8

. Show that if a is an integer such that @ is not divisible by 3 or such that a is divisible by
9, then a’ = a (mod 63).

9, Show that if a is an integer relatively prime to 32,760, then &' = 1 (mod 32,760).
10, Show that a%® 4 ¢@) = | (mod ab), if 2 and b are relatively prime positive integers.
11. Sclve each of the following linear congruences using Euler's theorem.
a) S3x =3 (mod 14) b)Y 4x =7 (mod 15) «¢) 3x = 5 (mod 16)
12. Show that the solutions to the simultancous system of congruences.
x=ap (mod my)

X == aq (mod my)

x =aqa, (mod m,},
where the m ; are pairwise relatively prime, are given by
x=a M 4 a5 4 g, M8 (mod M),

where M =mymy---m,and M; = M/m;for j = 1,2,...,r.
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4.
15.
ie.
17.
18,

19.

* 20,
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Use Exercise 12 to solve each of the systems of congruences in Exercise 4 of Section
4.3. -

Use Exercise 12 to solve the system of congruences in Exercise 5 of Section 4.3.
Use Euler’s theorem to find the last digit in the decimal expansion of 71000,

Use Euler’s theorem to find the last digit in the hexadecimal expansion of 51.000,000
Find ¢ () for the integers n with 13 < n <20.

Show that every positive integer relatively prime to 10 divides infinitely many repunits
(see the preamble to Exercise 11 of Section 5.1}. (Hint: Note that the n-digit repunit
H1.. . 1= (10" - 1)/9)

Show that every positive integer relatively prime to » divides infinitely many base b
repunits (see the preamble to Exercise 15 of Section 5.

Show that if » is a positive integer, m > 1, then @™ = gm—$0m (mod m) for all positive
integers a.

6.3 Computational and Programming Exercises

Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
catry out the following computations and explorations.

1

2.

Find ¢ (n) for all integers » less than 1000, What conjectures can you make about the
vaiues of ¢ ()7

Let @(ny =31 ¢(n). lavestigate the value of @(n)/n? for increasingly large values
of n, such as # == 100, n = 1000, and 7 = 10,000, Can you make a conjecture about the
limit of this ratio as n grows large without bound?

Progfamming Projects

Write programs using Maple, Mathematica, or a language of your choice to do the following,

L

Construct a reduced residue system modulo # for a given positive integer .

2. Solve linear congruences using Euler's theorem.

3,

Find the solutions of a simultaneous system of linear congruences using Euler’s theorem
and the Chinese remainder theorem {(see Exercise 12).
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7.1

ve Functions

Introduction

In this chapter, we will study a special class of functions on the set of integers called
muldtiplicative functions. A multiplicative function has the property that its value at
an integer is the product of its values at each of the prime powers in ifs prime-power
factorization. We will show that some important functions are multiplicative, including
the number of divisors function, the sum of divisors function, and the Euler phi-function,
We will use the fact that each of these functions is multiplicative to obtain a closed
formula for the value of these functions at a positive integer 1 based on the prime-power
factorization of .

Furthermore, we will study a special type of positive integer, called a perfect number,
which is equal to the sum of its proper divisors. We will show thatall even perfect numbers
are generated by a special kind of prime, called a Mersenne prime, which is a prime that
is 1 less than a power of 2. The quest for new Mersenne primes has been under way since
ancient times, accelerated by the invention of powerful computers, and accelerated even
more with the advent of the Internet,

We will also show how the summatory function of an arithmetic function can be used
to obtain information about the function itself. The summatory function of a function f
takes a value at n equal to the sum of the values of S ateach of the positive divisors of
#. The famous Mébius inversion formula shows how to obtain the values of [ from the
values of its summatory function.

The Euler Phi-Function

‘The Euler phi-funetion has the property that its value at an integer » is the product of the
values of the Euler phi-function at the prime powers that occur in the factorization of 7.
Functions with this property are called multiplicative; such functions arise throughout

239
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" number theory. In this section, we will show that the Fuler phi-function is multiplicative.

From this fact, we will desive a formula for its values based on prime factorizations.
Later in this chapter we will study other multiplicative functions, including the number
of divisors function and the sum of divisors function.

We first present some definitions.
Definition.  An arithmetic funetion is a function that is defined for all positive integers.

Throughout this chapter, we are interested in arithmetic functions that have a special
property.’

Definition. An arithmetic function f is called mulfiplicative if f(mn) = f{m) fFim)
whenever m and 1 are relatively prime positive integers. It is called completely multipli-
cative if f(nn) = f(m) f (n) for all positive integers m and .

Example 7.1. The function f(#) = 1 for all n is completely multiplicative, and hence
also multiplicative, because f(mn) =1, f(m}=1, and f(n) = 1, so that f(mn) =
f(m) f(n). Sindilarly, the function g{n) =n is completely multiplicative, and hence
multiplicative, since g(mn) = mn = g(m)g ). -«

If f is a multiplicative function, then we can find a simple formula for f(n) given
the prime-power factorization of 7. This result is particularly useful, because it shows us
how to find f (n) from the values off(p?")fori =1,2,...,5, wheren = p‘;ipgz e pe
is the prime-power factorization of ».

Theorem 7.1, If f is a multiplicative function and if n = p7'p5? - - - ps* is the prime-
power factorization of the positive integer n, then f(n) = f (p‘l”) Bl pgz) o FOPE).

Proof. We will prove this theorem using mathematical induction on the number of
different primes in the prime factorization of the integer n. If n has one prime in its
prime-power factorization, thenn = p{fl for some prime p, and it follows that the result
is trivially true.

Suppose that the theorem is true for all integers with & different primes in their
prime-power factorization. Now suppose that n has k + 1 different primes in its prime-

ower factorization, say n = plpa2 ... ppitil Because f is- multiplicative and
P Y ) Py Peyt p

(PP - p, Py = 1, we see that F(n) = f(PY'Py - P F (i) By the
inductive hypothesis, we know that f(pJ'p32ps’ - - - pe) = f(p V(P f (p3) -~

F(py. 1t follows that f(n) = f(p{") f (B - FEOS (pz’_f[‘). This completes the
inductive proof. n

We now return to the Euler phi-function. We first consider its values at primes and

then at prime powers.

Theorem 7.2, If p is prime, then ¢(p) = p — 1. Conversely, if p is a positive integer
with ¢(p) = p — 1, then p is prime.
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Proof. 1f p is prime, then every positive integer less than P is relatively prime to p.
Because there are p -- 1 such integers, we have $p)=p-1. Conversely, if p is not
prime, then p = 1 or P is composite, If p =1, then ¢(p) £ P — lbecause ¢ (1) = 1. If
P is composite, then » has a divisor d with 1 <« 4 < P, and, of course, p and 4 are not
relatively prime. Because we know that at least one of the P —lintegers 1,2, , , ., p—1,
namely d, is not relatively prime to P.Epy<p-2 Hence, if ¢ (p) = p—1then p
must be prime. |

We now find the values of the phi-function at prime powers,

Theorem 7.3, TLet pbeaprmeandaa positive integer. Then ¢ P = p% — pa-t,

Proof.  The positive integers less than p? that are not relatively prime to p are those
integers not exceeding p® that are divisible by p. These are the integers kp, where
1<k < p* ! Since there are exactly p?~! guch integers, there are pt—pot integers
less than p? that are relatively prime to P Hence, ¢ (p9) = pt— pol | |

Example 7.2. Using Theorem 7.3, we find that ¢(5%) = 5% _ 52 100, ¢ (210 =
2]°—~29=512,and¢(112)=112-—11=110. <

To find a formula for #{n), given the prime factorization of n, it suffices to show that
¢ is multiplicative. We illustrate the idea behind the proof with the following example,

Example 7.3. Letm =4 and 1 =09, 50 that mn = 36, We list the integers from 1 to 36
in a rectangular chart, as shown in Figure 7.1,

VO ®O» @6 =

2 6 6 14 18 22 26 30 34

OO s ®E 7 @6

4 8 1216 20 24 23 32 36

Figure 7.1 Demonstrating that P(36) = (4)p(9).

Neither the second nor the fourth row contains integers relatively prime to 36, since
each element in these rows is not relatively prime to 4, and hence not relatively prime to
36. We enclose the other two rows; each element of these rows is relatively prime to 4.
Within each of these Iows, there are 6 integers relatively prime to 9. We circle these; they
are the 12 integers in the list relatively prime to 36, Hence, 9 (36)=2.6= P {d)p (D).

<

We now state and prove the theorem that shows that ¢ is multiplicative.

Theorem 7.4, Let m and n be relatively prime positive integers, Then ¢ (mn) =

Pm)gp(n).



242

Multiplicative F unctions

Proof. 'We display the positive integers not exceeding 7 in the following way.

I m+1 2m+1 ... m—Dm-+1

2 m+2 2m+2 ... (n—hHhm+2

3 m+3 2m+3 ... (n—Dm+3

romAr 2m4+r ... (r—Dmtr
h m  2m 3 ... mn

Now, suppose that r is a positive integer not exceeding 2, and suppose that (m, r) =
d > 1. Then no number in the rth row is relatively prime to mn, because any element of
this row is of the form km + r, where k is aninteger with 1 <k <n — 1,andd | (km+7),
becaused |mandd | r.

Consequently, to find those integers in the display that are relatively prime to mi,
we need to Iook at the rth row only if m,r) = LIE(m,r) =1 and I <r <m, we must
determine how many integers in this row are relatively prime to mn. The elements in this
roware r,m+r,2m+r, ..., (n— m + r. Because (r,m) = 1, each of these integers
is relatively prime to m. By Theorem 4.6 the n integers in the rth row form a complete
system of residues modulo n. Hence, exactly ¢ (n) of these integers are relatively prime
to nn. Because these ¢ (n) integers are also refatively prime to i, they are relatively prime
to man.

Because there are ¢ (#) rows, each containing ¢ (n) integers relatively prime to mn,
we can conclude that ¢ (mn) = ¢ (m)¢{n). m

Combining Theorems 7.3 and 7.4, we derive the following formula for ¢ ().

Theorem 7.5. Letn = pi'p3”. -+ pi* be the prime-power factorization of the positive

integer n. Then
d(n) =n (1— 3‘—) (1_ i) (1_ i) _
P P Pk

Proof. Because ¢ is multiplicative, Theorem 7.1 tells us that

d(m) =P (PHD (P - (P

In addition, by Theorem 7.3, we know that

a; i —1 i 1
oG =p7 b} =p; (1 - f)

for j=1,2,...,k Hence,
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1 1 1
(n) = ‘”(L-—) “2(1——)--. "*(1——-)
b 1 P1 P2 P2 P Pr
i 1 1
s (- ) (=) (-
P by PA( Pl P IS
(1) (-2)(-2)
Py P2 Pr

This is the desired formula for ¢ (n). [ ]

We illustrate the use of Theorem 7.5 by the following example.

Example 7.4. Using Theorem 7.5, we note that

_ 262y __ _ i 1 -
P {100) = $(2°5%) = 100 (1 2) (I 5) =40
and
— dalay l E E — -«
& (720} = $(273°5) = 720 (1 2) (I 3) (1 5) =192,

Note that ¢ () is even except when n = 2, as the following theorem shows,

Theorem 7.6. Let n be a positive integer greater than 2. Then ¢ (1) is even,

Proof.  Suppose that n = p{'p)? ... p2 is the prime-power factorization of n. Because

¢ is multiplicative, it follows that ¢ (n) = []°_ ( 5 ). By Theorem 7.3, we know that

¢(P;Ij) = pf;j Ap ; — 1). We can see that ¢ ( pjj }iseven if p; is an odd prime, because
. . i—1, .

then p ;7 — liseven;orif p j=2anda ;> 1, because then p;J is even. Given thatn > 2,

at least one of these two conditions holds, so that &( p;fj } is even for at least one integer
7, 1 £ j < 5. We conclude that ¢ (n) is even. n

Let f be an arithmetic function, Then
Fm=Y" fd
dln

represents the sum of the values of f at all the positive divisors of n. The function F is
called the summatory function of f.

Example 7.5, If f is an arithmetic function with summatory function F, then
F(12) = Z F@=FD+ D+ B+ £ + £(6) + F(12).-
d|12

For instance, if f(d) =d? and F is the summatory function of f, then F(12) = 210,
because

Y =P 4224374 42 g2 4122

d]12

=1-+4+9+ 16 + 36 + 144 = 210. «
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The following result, which states that n is the sum of the values of the phi-function
at all the positive divisors of 7, will also be useful in the sequel. It says that the summatory
function of ¢ (1) is the identity function, that is, the function whose value at n is justz.

Theorem 7.7. Let n be a positive integer. Then

> ¢dy=n.

din
Proof. 'We split the set of integers from 1 to into classes. Put the integer m into the
class €, if the greatest common divisor of i and 1 is d. We see that m is in Cy, that is,
(m, n) = d, if and only if (m/d,n/d) = 1. Hence, the number of integers in Cy is the
number of positive integers not exceeding n/d that are relatively prime to the integer
n/d. From this observation, we sce that there are ¢ (n/d) integers in Cy. Because we
divided the integers 1to n into disjoint classes and each integer is in exactly one class, #
is the sum of the numbers of elements in the different classes. Consequently, we see that

n= Z din/d).

din
As d runs through the positive integers that divide r, n /d alsoruns through these divisors,
so that
n=y ¢@/d)=) 4@
din dln
This proves the theorem. n

Example 7.6. We illustrate the proof of Theorerm 7.7 when n = 18. The integers from
1to 18 can be split into classes Cy, where d | 18 such that the class C; contains those
integers m with (m, 18) = d. We have

C,=1{1,5,7,11,13,17} Cg=16,12}

Cy=12,4,8,10,14,16} Co= {9}

C3= 13,15} Cyg = {18}.

We see that the class €y contains ¢(18/d) integers, as the six classes contain
$(18) =16, (9)=6,¢(6) = 2,0(3)=2,¢2)=1Landp() = 1 integers, respectively.
We note that 18 = ¢(18) + ¢(9) + ¢ (6) +¢(3) +¢(2) + o (L) = 2aps P(D). «

A useful tool for finding all positive integers » with ¢ (n) =k, where k is a positive
integer, is the equation ¢ (n) = H;‘:l pf"_l( p; — 1), where the prime-power factorization
ofnisn= Hf:l p;". This is illustrated in the following example.

Example 7.7. What are the solutions to the equation ¢(n) =8, wheren is a positive
integer? Suppose that the prime-power factorization of n isn = p‘f‘ p;?' e pf,". Because

k
oo =177 ;-

j=1
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the equation ¢{n) = 8 implies that no prime exceeding 9 divides n (otherwise ¢(n) >
pj — 1> 8). Furthermore, 7 cannot divide n because if it did, 7 — 1 =6 would be a factor
of ¢(n). It follows that n = 2385, where a, b, and ¢ are nonnegative integers. We can
also conclude thatb =0orb=landthatc =Qorc=1; otherwise, 3 or 5 would divide

d(n) =8.

To find all solutions we need only consider four cases. When b = ¢ =0, we have
n =2" where a > L. This implies that ¢ (1) = 291, which means thata = 4 and n = 16.
Whend=0andc =1, wehaven =2°. 5, whereq > 1. This implies that ¢ (1) = 291 . 4,
soa=2andn =20. Whenb = landc =0, we have n =27 - 3, where @ > 1. This implies
that ¢ () =2°71.2 =227 s0a =3 and n = 24. Finally, when b = 1 and ¢ = 1, we have
n=2%.3.5 Weneed to consider the case where a = ), as well as the case where a > 1.
When a = 0, we have n = 15, which is a solution because ¢{15) =8 Whena > 1, we
have ¢(n) =271 2. 4 = 2%+2, This means that « = 1 and » = 30, Putting everything
together, we see that all the solutions to ¢ (1) = 8 are nn = 15, 16, 20, 24 and 30. «

7.1 Exercises

1. Determine whether each of the following arithmetic functions is completely multiplica-
tive. Prove your answers.

a) fF(my=0 d) f(n) =logn g fimy=n+41
by finy=2 e) f(n) =n? h) f{n) =n"
) F1) =n/2 £) fn) =n! D fmy=yn
2. Find the value of the Euler phi-function at each of the following integers.
&) 100 d)2.3.5.7.11.13
b) 256 e) 10!
c) 1001 ) 20!

3. Show that ¢(5186) = ¢ (5187) = ¢ (5188).

4. Find all positive integers » such that ¢ (n) has each of the following values, Be sure to
prove that you have found all solutions,

a)l b)2 )3 dy4
5. Find all positive integers n such that ¢ () = 6. Be sure to prove that you have found all
solutions.

6. Find all positive integers n such that ¢ (n) = 12. Be sure to prove that you have found
all solutions.

7. Find all positive integers n such that ¢{n) = 24. Be sure to prove that you have found
all solutions.

8. Show that there is no positive integer z such that ¢ (n) = 14.

9. Can you find a rule involving the Euler phi-function for producing the terms of the
sequence 1,2,2,4,4,4,6,8,6,...7



246

Multiplicative Functions

10.

11
12.
13,
14,
15.

16.

17.
18,
19.

20.

2L

22.
23,

24,

25,

26.

27,

28.

* 29,

Can you find a rule involving the Fuler phi-function for producing the terms of the
sequence 2,3,0,4,0,4,0,5,0,...7

For which positive integers n does ¢(3n) = 3¢ (n)?
For which positive integers n is ¢ (i) divisible by 4?
For which positive integers n is ¢ {n) equal to n/2?
For which positive integers i does ¢{(n) | n?

Show that if n is a positive integer, then

P(2n) = { ¢(n) ifnisodd;

24én) ifniseven
Show that if # is a positive integer having k distinct odd prime divisors, then ¢ () is
divisible by 2%,
For which positive integers r is ¢ (1) a power of 27
Show that if # is an odd integer, then ¢ (4n) = 2¢(x).

Show that if n = 2¢(n), where n is a positive integer, then n = 24 for some positive
integer j.

Let p be prime. Show that p f n, where 7 is a positive integer, if and only if ¢{np) =
(p — Dén).
Show that if m and n are positive integers and (m,n) = p, where p is prime, then

Plmn) = pdpme{n)/(p — 1.
Show that if m and k are positive integers, then ¢ (m*) = m*~1g (m).
Show that if @ and b are positive integers, then

¢(ab) = (a, bYp (a)p(b) /¢ {(a, b)).
Conclude that ¢ (ab) = ¢{a)d(b) when {a, b} > L

Find the least positive integer 7 such that the following hold.
a) ¢(n) = 100 ¢) ¢(n) = 10,000
b) ¢ () = 1000 d) ¢ () = 100,000

Use the Euler phi-function to show that there are infinitely many primes. (Hin#: Assume
there are only a finjte number of primes py, ..., p;. Consider the value of the Euler
phi-function at the product of these primes.)

Show that if the equation ¢ (n) = k, where k is a positive integer, has exactly one solution
n,then 36 | n.

Show that the equation ¢ (1) = k, where k is a positive integer, has finitely many solutions
in integers » whenever k is a positive integer.
Show that if p is prime, 2°p + 1is composite fora =1,2,...,r and p is not a Fermat

prime, where r is a positive integer, then ¢ (n} = 2" p has no solution.

Show that there are infinitely many positive integers & such that the equation ¢ (n} =k
nas exactly two solutions, where n is a positive integer, (Hint: Take k = 2 - 3571, where
J=L2,...)
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30. Show that if n is a positive integer with n # 2 and n # 6, then ¢(n) = \/n.

* 31. Show that if n is a composite positive integer and ¢(n) | r — 1, then »n is square-free and
is the product of at least three distinct primes.

32. Show that if m and n are positive integers with | 2, then ¢ (m) [ o (n).

* 33. Prove Theorem 7.5, using the principle of inclusion-exclusion (see Exercise 16 of
Appendix B),

34. Show that a positive integer 1 is composite if and only if ¢ (n) <n — /.

35. Let n be a positive integer. Define the sequence of positive integers ny, 1y, 13, . ..
recursively by n; = ¢ (i) and np, ;= (ny) for k=1,2,3,.... Show that there is a
positive integer r such that z#, = 1.

A multiplicative function is called strongly multiplicative if and only if f(p¥) = f(p) for
every prime p and every positive integer k.

36. Show that f(n) = ¢(n)/n is a strongly multiplicative function.

Two arithmetic functions f and g may be multiplied using the Dirichlet product, which is
defined by

(F=e)m)y =" fldgn/d).

din
37. Show that fxg=gx f.
38. Show that (f = g)=h = f = (g x k).
We define the ¢ funcrion by
_ |t ifm=1;
(o) = | 0 ifn>1

39. a} Show that ¢ is a multiplicative finction.
b) Show that ¢ % f = F % (= f for all arithmetic functions f.

40. "The arithmetic function g is said to be the inverse of the arithmetic function fiffrg=
g * f =t. Show that the arithmetic function £ has an inverse if and only if f(1) #£0.

Show that if f has an inverse it is unique. (Hint: When F(1) #0, find the inverse f~!
of f by calculating f~!(n) recursively, using the fact that ((n) = Edm F@fYn/d).)

41. Show thatif f and g are multiplicative functions, then the Dirichlet product f = g is also
multiplicative.

42. Show that if f and g are arithmetic functions, F = f % g, and # is the Dirichlet inverse
of g, then f = F xh.

We define Liouville's function \.(n), named after French mathematician Joseph Liouville, by
A(D =1, and for n > 1, A(n) = (—DAFarttan whara the prime-power factorization of n
isn=p{'p3*. . pom.
43. Find A(n) for each of the following values of 1.

ayl2 c) 210 e) 1001 2) 20!

b) 20 d) 1000 f) 10t
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44, Show that A{n) is completely multiplicative.

45. Show that if » is a positive integer, then } _,, A(d) equals 0 if » is not a perfect square,
and equals 1if » is a perfect square.

46, Show thatif f and g are multiplicative functions, then fg is also multiplicative, where
(fg)(n) = f(m)g(n) for every positive integer n.

47. Show thatif f and g are completely multiplicative functions, then fg is also completely
multiplicative,

48. Show that if f is completely multiplicative, then f (1) = f(p)™ f(p2)™ - f (P}
where the prime-power factorization of 17 isn = p‘;‘ pgz -~ - pom

m "

Afunction f that satisfies the equation f (mn) = f(m) + f(n) forall relatively prime positive
integers m and n is called additive, and if the above equation holds for all positive integers m
and n, f is called completely additive.

49, Show that the function f{n) = log n is completely additive.

The function () is the function that denotes the number of distinct prime factors of the
positive integer n.

80, Find w(n) for each of the following integers.
ayl )2 )20 d)84 e)128

JOSEPH LIOUVILLE (1809-1882), born in Saint-Omer, France, was the

son of a captain in Napoleon’s army. He studied mathematics at the College
St. Louis in Paris, and in 1825 he enrolfed in the Ecole Polytechnique; after
graduating, he entered the Ecole des Ponts et Chaussées (School of Bridges
and Roads). Health problems while working on engineering projects and his
interest in theoretical topics convinced him to pursue an academic career. He
Ieft the Fcole des Ponts et Chaussées in 1830, but during his time there he wrote
papers on electrodynamics, the theory of heat, and partlal differential equations.

Liouville’s first academic appointment was as an assistant at the Ecole Polytechnique in 1831.
He had a teaching load of around 40 hours a week at several different institutions. Some of his less
able students complained that he lectured at too high a level. In 1836, Liouvitle founded the Journal
de Mathématiques Pures et Appliquées, which played an important role in French mathematics in the
nineteenth century. In 1837, he was appointed to lecture at the Collége de France and the following year
he was appointed Professor at the Ecole Polytechnique. Besides his academic interests, Liouville was
also involved in politics. He was elected (o Constituting Assembly in 1848 as a moderate republican,
But lost in the election of 1849, embittering him. Liouville was appointed to a chair at the Collége
de France in 1851, and the chair of mechanics at the Faculté des Sciences in 1857. Around this time,
his heavy teaching load began to take its toll. Liouville was a perfectionist and was unhappy when he
could not devose sufficient time to his lectures,

Liouville’s work covered many diverse areas of mathematics, including mathematical physics,
astronomy, and many areas of pure mathematics. He was the first person to provide an explicit example
of atranscendental number. He is also known today for what is now called Sturm-Liouville theory, used
in the solution of integral equations, and he made important contributions to differential geometry.
His total output exceeds 400 papers in the mathematical sciences, with nearly half of those in number
theory alone.
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Find e (1) for each of the following integers.
al2 B30 32 10 e) 20! £) 501

Show that () is additive, but not completely additive.

Show that if f is an additive function and g(n) = 2/®, then £ is multiplicative.

k

Show that the function " is completely multiplicative for every real number k.

Computational and Programming Exercises

Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have wriiten,
carry out the following computations and explorations,

1.

Find ¢(n) when n takes each of the following values.

a) 185,888,434,028 by 1L,L111,111,111,1 11

- Find the number of iterations of the Euler phi-function required to reach 1, starting with

each of the integers in Computation 1.

. Find the largest integer n such that ¢ (n)} < k for each of the following values of k.

a} 1,000,000 b) 10,000,000

- Find as many positive integers n as you can, such that ¢(n) = ¢(n + 1). Can you

formulate any conjectures based on the evidence that you have found?

- Can you find a positive integer » other than 5186 such that ¢ (n) = ¢ (n + 1) = ¢ (n +2)?

Can you find four consecutive positive integers n, 1 + 1, 1t + 2, n - 3, such that )=
pin+ D =¢@+2)=¢{n+3)7

+ Anopen conjecture of D. H. Lehmer asserts that » is prime if ¢ (1) divides n — 1. Explore

the truth of this conjecture,

. An open conjecture of Carmichael asserts that for every positive integer n there is a

positive integer m such that ¢(m) = ¢ (n). Gather as much evidence as possible for this
conjecture.

Programming Projects

Write programs using Maple, Mathematica, or a language of your choice to do the following.

1.
2.

3.

Given a positive integer #1, find the value of ¢ (n).

Given a positive integer 7, find the number of iterations of the phi-function, starting with
n, required fo reach 1. (This is the the integer » in Exercise 35.)

Given a positive integer k, find the number of solutions of ¢ (n) = k.
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The Sum and Number of Divisors

As we mentioned in Section 7.1, the number of divisors and the sum of divisors are
both multiplicative functions. We will show that these functions are multiplicative, and
derive formulas for their values at a positive integer n from the prime factorization of 7.

Definition. The sum of divisors function, denoted by o, is defined by setting o (n) equal
to the sum of all the positive divisors of n.

In Table 7.1, we give o (n) for 1 < n < 12, The values of o(n) for 1 <n < 100 are
given in Table 2 of Appendix E. {These values can also be computed using Maple or
Mathematica.)

n 11213 ] 4|5 6 7 3 9 10| 11 12

a(n) 13 |4|7]6 12 | 8 15 13 | 18 12 | 28

Table 7.1 The sum of the divisors for 1 =n <12,

Definition. The number of divisors function, denoted by 1, is defined by setting v(n)
equal to the number of positive divisors of n. ’

In Table 7.2, we give t(n) for I <a < 12. The values of t(n) for 1 < n < 100 are
given in Table 2 of Appendix E. (These values can also be computed using Maple or
Mathematica.)

n 1 2|13 4,5]|6]7 8|19 10 11 12
T(n) 1 2121332042 )4]3 4 2 6

Table 7.2 The number of divisors for 1 <n < 12

Note that we can express o (#) and 7 (7) in summation notation. It is simple to see

that
o{n) = Z d

din
and
w(n) = Z 1.
dln

To prove that o and 7 are multiplicative, we use the following theorem.

Theorem 7.8. If f is a multiplicative function, then the summatory function of f,
namely F(n) =, f(d), is also multiplicative.

e
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Before we prove the theorem, we illustrate the idea behind its proof with the
following example. Let f be a multiplicative function, and let F(n} = Zdh, F{d). We
will show that F(60) = F(4) F(15). Each of the divisors of 60 may be written as the
product of a divisor of 4 and a divisor of 15 in the following way: 1==1.1,2=2-1,
3=1:3,4=4.1,5=1-56=2.310=2.5, 12=4.3,15=1-1520=4.5,
30=2-15, 60 =4 .15 (in each product, the first factor is the divisor of 4, and the
second is the divisor of 15). Hence,

FOO =M+ fQ+fO+ F@ + £+ £(6) + F10) + £(12)

+ f(15) + £20) + f£(30) + £(60)
=fD+fC-D+ A+ FE- D+ A5+ F(2-3)
+f25+fE-3H+f0. IS+ f@d-5+ f2-15 + f(4-15)
=fOfW+FDFD+ FOLB+ FA L) + FO)F5)
+IRQfA+FDFE+ FA B+ FDFUS) + FA) FG)
+ f2YF(A5) + f(&) F(15)
=D+ F@Q+ @D+ FO + F5 + F15)
= F(4)F(15).

We now prove Theorem 7.8 using the idea illustrated by the example.

Proof. To show that ¥ is a multiplicative function, we must show that if m and n

are relatively prime positive integers, then F(mn) = F {(m) F{n). So let us assume that
(m,n) = 1. We have

F(mn) = Z Fid).

dlmn

By Lemma 3.6, because (m, n) = 1, each divisor of mn can be writien uniquely as the
product of relatively prime divisors & of m and d, of n, and each pair of divisors d, of
m and d, of n corresponds to a divisor d = d,d, of mn. Hence, we can write

F(mn) = Z flddy).

dylm
dyln

Because f is multiplicative, and {di. dy) = 1, we see that

Finn) = Z fldy) f(dy)

dllm
daln

=) f@) Y fidy)

dilm daln
= F(m}F(n). |
We can now use Theorem 7.8 to show that o and t are multiplicative.

Corollary 7.8.1. The sum of divisors function ¢ and the number of divisors function
t are multiplicative functions,
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Proof. Let f(n)=n and g{n) = 1. Both f and g are multiplicative. By Theorem 7.8,
we see that o (n) = 3 _y), f(@) and t(n) = 3, g(d) are multiplicative. n

Now that we know that o and T are multiplicative, we can derive formulas for their
values based on prime factorizations. First, we find formulas for o (x) and 7 (r) when n
is the power of a prime.

Lemma 7.1. Let p be prime and ¢ a positive integer. Then
at+l _ |

p—1

(P =14 p+p b 4pi=F

and
t(p)=a+1

Proof. The divisors of p® are 1, p, P ..., p* L, p® Consequently, p® has exacﬂy
« -+ 1 divisors, so that 7(p®) = a + 1. Also, we note that s (p*) =1+ p + Pt

Pl pt = f:_l‘- , using the formula in Example 1.15 for the sum of terms of a
geometric progression. |

Example 7.8. When we apply Lemma 7.1 with p = S and a =3, we find that o (5%) =
1+5+52+5= ;ﬂ—uwﬁmmfw%——p+3 4. <

Lemma 7.1 and Corollary 7.8.1 lead to the following formulas.

dg

Theorem 7.9, Let the positive integer » have prime factorization n = p‘f‘ pgz coa pst
Then

+1 az+1 o+ _
PR S Y it p 1“ﬁ i 1t
pr—-1 pa—1 ps—1 o el

and

5
tm)y=(a;+ D+ D@+ 1= H(“f +1).
J=t
Proof. Because both ¢ and t are multiplicative, we see that o(n) = o (p 1] 3 ps)

=o(p{)o(py?) -+~ o (pP) and T(n) = T(p\'py’ -+ pi) = (P (py?) - - - (5.
Inserting the values for cr(p 7y and ‘C(p ) found in Lemma 7.1, we obtain the desired
formulas. 2

We illustrate how to use Theorem 7.9 with the following example.

Example 7.9, Using Theorem 7.9 we find

2—-1 -1
2—-1 5-1
T(200) =125 =3+ DR+ D =12

7 (200) = o (235%) = = 15 .31 =465,
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Similarly, we have

t@ 3.5y = @+ D@ + D1+ 1) = 30, <

7.2 Exercises
1.

Find the sum of the positive integer divisors of each of the following integers.

a) 35 €2-3-5-7.11
b) 196 f) 2334537211
c) 1000 g) 10!
dy 2100 h) 20!
. Find the number of positive integer divisars of each of the following integers.
a) 36 dy2-3-5.7.11-13.17. 19
b} 99 €2-3-53. 7 . 115134175 195
c) 144 f) 20!

3. Which positive integers have an odd number of positive divisors?

4. For which positive integers # is the sum of divisors of n odd?

5. Find all positive integers n with o {n) equal to each of the following integers,

a) 12 d) 48
b) 18 e) 52
c) 24 ) 84
. Find the smallest positive integer n with 7 (1) equal to each of the following integers,
a) 1 d) 6
b2 e) 14
c)3 £y 100

« Show that if k > 1is an integer, then the equation r(n) = k has infinitely many solutions.

8. Which positive integers have exactly two positive divisors?

. Which positive integers have exactly three positive divisors?
10.
1L
i2,

13.

Which positive infegers have exactly four positive divisors?

What is the product of the positive divisors of a positive integer n?

Show that the equation o (n) =k has at most a finite number of solutions when k is a
positive integer,

For each of the following sequences, can you find a rule for producing the terms of the
sequence that involves the t and/or the o function?

a} 3,7,12,15,18,28,24,31, . .

b) 0,1,2,4,4,8,6,11,...
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14,

cy 1,2,4,6,16,12,64,24,36,48, ...

4 1,0,1,1,0,1,1,1,0,0,0,2, 1, ...

For each of the following sequences, can you find a rule for producing the terms of the
sequence that involves the T and/or the ¢ function?

a} 2,5,6,10,8,16,10,19,16,22, ...

by 1,4,6,8,13,12,14,24,18, . ..

¢) 6,8,10,14,15,21,22,26,27,33,34,35, ...

dy 1,2,2,2,3,2,2,4,2,2,4,2,3, ...

A positive integer n, n > 1, is highly composite, a concept introduced by the famous Indian
mathematician Srinivasa Ramanujan, if v(m) < 7(n) for all integers m with 1 <m < n.

15,
16.

7.

18.

* 19,

Find the first six highly composite positive integers.

Show that if # is a highly composite positive integer and m is a positive integer with
T(m) = 7(n), then there exists a highly composite integer k such that n <k < m.
Conclude that there are infinitely many highly composite integers.

Show that if n > 1, there exists a highly composite number k such thatn < &k <2n. Use
this to provide an upper bound on the mth highly composite number, where m 1s a positive
integer.

Show that if » is a highly composite positive integer, there exists a positive integer k such
that i = 2413%5% . . . p*, where py is the kth prime and @y = ay = - - Z g = L.

Find all highly composite numbers of the form 243" where a and b are nonnegative
integers.

Let o (1) denote the sum of the kth powers of the divisors of n, so that oy(n) = 2din d*.
Note that y{n) = o ().

20.
21,
22.
23,
24,

* 285,
% 26.
27.

28.

29,
30.

Find a3(4), a3(0), and 03(12}.

Give a formula for o (p), where p is prime.

Give a formuta for o, (p®), where p is prime and a is a positive integer,

Show that the function gy, is multiplicative,

Using Exercises 22 and 23, find a formula for o3 (n), where n has prime-power factor-
ization n = p{'p5? - - - plm.
Find all positive integers n such that ¢ (1) + o {n) =2n.

Show that no two positive integers have the same product of divisors.

Show that the number of ordered pairs of positive integers with least common multiple
equal to the positive integer # is T(n").

Let n be a positive integer, # > 2. Define the sequence of integers 1y, 19, 113, . .. by
ny=t(n) and ng =t for k=1,2,3,.... Show that there is a positive integer
rsuchthat2=n,=n =0, 0=....

Show that a positive integer 1 is composite if and only if o (n) > n + 1.

Let » be a positive integer. Show that (2" — 1) = t{n).
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% 31, Show that ZL;I (jy=2 Ziﬁl[n/ 71— [v/nP* whenever n is a positive integer. Then
use this formula to'find Z}g{ T({).

* 32, Leta and b be positive integers. Show that ol{a)/a < a(ab)/(ab) < o (a)s (b)/(ab).

* 33, Show that if 4 and b are positive integers, then & (a)o (b} = Zd,(ﬂ b 4o fab/d?).

SRINIVASA RAMANUJAN (1887-1920) was born and raised in southern
India, near Madras. His father was a clerk in a cloth shop and his mother
contributed to the family income by singing at a local temple. Ramanujan
studied at a local English language school, displaying a talent in mathematics.
At 13 he mastered a textbook used by college students; when he was 15,
a university student lent him a copy of Synopsis of Pure Mathematics, and
Ramanujan decided to work out the more than 6000 results in this book. He
graduated from high school in 1904, winning a scholarship to the University of
Madras. Enrolling in a fine arts curriculum, he neglected subjects other than mathematics and lost his
scholarship. During this time he filled his notebooks with original writings, sometimes rediscovering
already published work and at other times making new discoveries.

Lacking a university degree, Ramanujan found it difficult to land a decent job. To survive, he
depended on the good will of friends. He tutored students, but his uncoventional ways of thinking
and failure to stick to the syllabus caused problems. He was married in 1909 in an arranged marriage
to @ woman who was 13 years old. Needing to support himself and his wife, he moved to Madras
Iooking for a job. He showed his notebooks 1o potential employers, but his writings bewildered them.
However, a professor at the Presidency College recognized his genius and supported him, and in 1912
he found work as an accounts clerk, which earned him a small salary,

Ramanujan continued his mathematical investigations, publishing his Arst paper in 1910 in an
Indian journal. Realizing that his work was beyond that of Indian mathematicians, he decided to write
to leading English mathematicians. Although the first mathematicians turned down his request for
help, G. H. Hardy arranged a scholarship for Ramanujan, bringing him to England in 1914, Hardy
initially was-inclined to tum Ramanujan down, but the mathematical restrlts Ramanujan stated without
proof in his letter puzzled Hardy, He examined Ramanujan’s writings with the aid of his collaborator,
J. E. Littlewaod. They decided that Remanujan was probably a genius, as his statements “could only be
written down by a mathematician of the highest class; they must be true, because if they were not true,
no one would have the imagination to invent them.” Hardy personally tutored Ramanujan and they
collaborated for five years, proving significant theorems about the partitions of integers. During this
time, Ramanujan made important contributions to number theory, and worked on elliptic functions,
infinite series, and continued fractions. Ramanujan had amazing insight involving certain types of
functions and series, but his purported theorers on prime numbers were often wrong, illustrating his
vague idea of what makes up a correct proof.

Ramanujan was one of the youngest members ever appointed a Fellow of the Royal Society.
Unfortunately, in 1917, he became extremely ill. Although it was once thou ght he contracted turbercu-
losis, it is now thought that ke suffered from a vitamin deficiency brought on by his strict vegetarianism
and shortages in wartime England. He returned to India in 1919 and continued his mathematical work
even while confined to bed. He was highly religious and thought that his mathematical talent came
from his family deity, Namaigiri. He said that “an equation for me has no meaning unless it exprcsses
a thought of God." He died in April 1920, leaving several notebooks of unpublished results. Mathe-
maticians have devoted many years of study to the explanation and justification of the results jotted
down in Ramanujan’s notebooks.
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* 34,

35.

36.
x 37,
* 38,
39.

40.

Show that if » is a positive integer, then (Ed{n f(d))z = Yun T(d)’.

Show that if n is a positive integer, then 7(n%) = ¥ g, 2°%", where @ {n) equals the
number of prime divisors of n.

Show that ), no (d)/d =3y, dv(d) whenever nis a positive integer.

Find the determinant of the # x # matrix with (i, j)th entry equal to (7, j).

Let » be a positive integer such that 24 | (# - 1). Show that o (1) is divisible by 24.

Show that there are infinitely many pairs of positive integers i, n such that ¢ (m) = o {n},
if there are infinitely many pairs of twin primes or infinitely many Mersenne primes (that
is, primes of the form 2# — 1, where p is primme).

Prove that 3, Ja ¢{d) = n (Theorem 7.7) as a consequence of Theorem 7.8.

7.2 Computational and Programming Exercises

Computations and Explorations

Using a computation program such as Maple or Mathematica, Or programs you have written,
carry out the following computations and explorations,

1

% 5,

Find t(n), o (1), and o3(») (as defined in the preamble to Exercise 20) for each of the
following vatues of n.

a) 121,110,987,654 by 11,111,111,111 ) 98,989,898,589

. Find as many pairs, triples, and quadruples as you can of consecutive integers, each with

the same number of positive divisors.

. Determine the number of iterations required for the sequence ny = T{n),

ny=1(ny, ..., Mpyy=1T(ng), . .. to reach the integer 2, for all positive integers n
not exceeding 1000, Formulate some conjectures based on your evidence.

. Find all the highly composite integers (as defined in the preamble to Exercise 15) not

exceeding 10,000.
Show that 29,331,862,500 is a highly composite integer.

Programming Projects

Write programs using Maple, Mathematica, or a language of your choice to do the following.

1.
2.
3

Given & positive integer n, find 7(n), the number of positive divisors of n.
Given a positive integer n, find o (1), the sum of the positive divisors of n.

Given a positive integer n and a positive integer k, find g (n), the sum of the kth powers
of the positive divisors of n.

. Given a positive integer #, find the integer r defined in Exercise 28.

. Given a positive integer », determine whether n is highly composite.
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Because of certain mystical beliefs, the ancient Greeks were interested in those integers
that are equal to the sum of alt their proper positive divisors. Such integers are called
perfect numbers.
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i
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Definition. If » is a positive integer and o (1) = 2#1, then n is called a perfect number.

Example 7.10. Because o (6) = 1+ 2+ 3+ 6 = 12, we see that § is perfect. We also
note that o (28) = 1+ 2 + 4 - 7 4 14 4 28 = 56, so that 28 is another perfect number,
<

The ancient Greeks knew how to find all even perfect numbers. The following
theorem tells us which even positive integers are perfect.
Theorem 7.16¢. The positive integer » is an even perfect number if and only if
"= 2{n;£(2m —1
where m is an integer such that m > 2 and 2" — 1 s prime.

Proof.  First, we show that if n = 2"—i(am _ 1), where 2™ — 1 is prime, then # is
perfect. We note that because 27 — 1 is odd, we have (271, 2" — 1) = 1. Because o
is a multiplicative function, we see that

o(n)=o(2" He@” - 1.

Lemma7.1tellsusthato (2% 1) =2" _lando (2" — 1) = 2™ because we are assuming
that 27 — 1 is prime. Consequently,

o(n) = (2" - 12" =2n,
demonstrating that » is a perfect number,

To show that the converse is true, let 1 be an even perfect number, Write n = 25,
where s and ¢ are positive integers and 7 is odd. Because (2%, 1) =1, we see from Lemma
7.1 that

(7.1) o(my=0(2°t) =c (2o (®) = @ - Do),

Because n is perfect, we have

(7.2) o(n) =2n =2,
Combining (7.1} and (7.2) shows that
(7.3) @ — Do) =25,

Because (21, 25+ _ 1) = 1, from Lemma 3.4 we see that 25+! | & (¢). Therefore, there
is an integer g such that o () = 2° Hq. Inserting this expression for o (7) into {7.3) tells
us that

(2S+1 _ 1)2S+1q — 25+1I,
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and, therefore,
(7.4) (g =t.
Hence, g [rand g #1¢.

When we add g to both sides of (7.4), we find that

(1.5) thg=@N - Dg+q=2"g=00.

We will show that g = 1. Note that if ¢ # 1, then there are at least three distinct positive
divisors of ¢, namely 1, g, and ¢. This implies that c(#) > # g + 1, which contradicts
(7.5). Hence, g = 1 and, from (7.4), we conclude that t = 25t1 — 1. Also, from (7.5), we
see that o (¢} = ¢ + 1, so that ¢t must be prime, because its only positive divisors are 1 and
1. Therefore, n = 25(25t1 — 1), where 2°+! — 1is prime. »

By Theorem 7.10, we see that to find even perfect numbers, we must find primes of
the form 2™ — 1. In our search for primes of this form, we first show that the exponent
p1 must be prime.

Theorem 7.11. If m is a positive integer and 2" — 11is prime, then m must be prime.

Proof Assume that m is not prime, so that m = ab, where leca<mandl <b <m.
(Note that m > 1, since 2" — 1is prime.) Then

om 1___26[) —1= (2&' _ 1)(2&(5—1) + 2{1(&“2} 4t aa + 1)'

Because both factors on the right side of the equation are greater than 1, we see that
2" — 1 is composite if m is not prime. Therefore, if 2 — 11s prime, then mm must also
be prime. |

By Theorem 7.11, we see that to search for primes of the form 2" — 1, we need to
consider only integers m that are prime. Integers of the form 2" — 1 have been studied
in great depth; these integers are named after a French monk of the seventeenth century,
Marin Mersente, who studied them.

Definition. If m is a positive integer, then M,, = 2" — 1is called the mth Mersenne
number; if p is prime and M, =27 — 1 is also prime, then M, is called a Mersenne
prime.

Example 7.11, The Mersenne number My = 27 — 11is prime, whereas the Mersenne
number M| = 21 — 1=2047 =23 89 is composite. <

It is possible to prove various theorems that help decide whether Mersenne numbers
are prime. One such theorem will now be given. Related results are found in Exercises
37-39 in Section 11.1.

Theorem 7.12. If p is an odd prime, then any divisor of the Mersenne number M, =
9P . 1is of the form 2kp + 1, where & is a positive integer.
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Proof. Let q be a prime dividing M p = 2% — 1. By Fermat’s little theorem, we know
that g | (297! — 1), Also, from Lemma 3.2, we know that

(7.6) (27 — 1,297 - Py —=opa-D 1

Because g is a common divisor of 27 — 1and 29! — 1, we know that 2F-1,2071_1
> 1. Hence, (p, g — 1) = p, because the only other possibility, namely (p,qg ~ ) =1,
would imply from (7.6) that (27 — 1,271 — 1) = . Hence p (g — 1) and, therefore,
there is a positive integer m such that g — 1 = m p. Because g is odd, we see that in must
be even, so that m = 2k, where k is a positive integer. Hence, ¢ =mp + 1= 2kp + 1.
Because any divisor of M p 18 a product of prime divisors of M > €ach prime divisor of
M), is of the form 2kp + 1, and the product of numbers of this form is also of this form,
the result follows. | |

We can use Theorem 7.12 to help decide whether Mersenne numbers are prime. We
illustrate this by the following examples.

Example 7.12.  To decide whether M3 = 213 — | = 8191 is prime, we need only ook
for a prime factor not exceeding /8191 = 90.504 . . .. Furthermore, by Theorem 7.12,
any such prime divisor must be of the form 26k + 1. The only candidates for primes
dividing M5 less than or equal to \/M 3 are 53 and 79. Trial division easily rules out
these cases, so that M4 is prime. <

Example7.13. Todecide whether My; == 223 — | = 8,388,607 s prinie, we only need to
determine whether M, is divisible by a prime less than or equal to \/M—H =2896.309. ..
of the form 46k + 1. The first prime of this form is 47. A trial division shows that
8,388,607 = 47 - 178,481, so that M,; is composite. «

MARIN MERSENNE (1588-1648) was bormn in Maine, France, into a family
of workers. He attended the College of Mans and the Jesuit College at La
Fléche, He continued his education at the Sorbonne, studying theology. He
joined the order of the Minims in 1611, a group whose name comes from
the word minimi indicating that the members considered themselves the least
religious order. Besides prayer, members pursued scholarship and study. In
1612, Mersenne became a prest at the Palace Royale in Paris; between 1614
and 1618, he taught philosophy at the Minim Convent in Nevers. He returned
to Paris in 1619, where his cell in the Minims de 1’ Annociade was a meeting place for scientists,
philosophers, and mathematicians, including Fermat and Pascal. Mersenne corresponded extensively
with scholars throughout Europe, serving as a clearinghouse for new ideas. Mersenne wrote books
on mechanics, mathematical physics, mathematics, music, and acoustics. He studied prime numbers
and tried unsuccessfully to develop a formula representing all primes. In 1644, he claimed to have the
complete list of primes p with p < 257 for which 27 — 1 is prime; this claim was far from accurate.
Mersenne is also noted for his defense of two of the most famous men of his time, Descartes and
Galileo, from religious critics. He also helped expose alchemists and asteologers as frauds,
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Because there are special primality tests for Mersenne numbers, it has been possible
to determine whether extremely large Mersenne numbers are prime.

A particularly useful primality test follows, known as the Lucas-Lehmer test after
Edouard Lucas, who developed the theory the test is based on in the 1870s, and Derrick
H. Lehmer, who developed a simplified version of the test in 1930. This test has been
used to find the largest known Mersenne primes and is being used today in the ongoing
search for new Mersenne primes, described lIater in this section. For most of recent
history, the largest known Mersenne prime was the largest known prime as is currently
the case. However, from late 1990 until early 1992, the largest known prime was
391,581 - 2216193 _ | Becaunse this number is of the form k . 2" — 1, it was possible
to use special tests to show that it is prime.

Theorem 7.13. The Lucas-Lehmer Test. Let p be a prime and let M, =27 — 1denote
the pth Mersenne number. Define a sequence of integers recursively by setting r; =4
and, fork > 2,

re=ri_ —2(mod M,),0 <rp < M,

Then M, is prime if and only if r, ;=0 (mod M).

FRANCOIS-EDOUARD-ANATOLE LUCAS (1842-1891) was bom in
Amiens, France, and was educated at the Ecole Normale. After finishing his
studies, he worked as an assistant at the Paris Observatory, and during the
Franco-Prussian war he served as an artillery officer. After the war he became a
teacher at a secondary school, He was considered to be an excellent and enter-
taining teacher. Lucas was extremely fond of calculating and devised plans for
a computer, which unfortunately were never realized. Besides his contributions
to number theory, Lucas is also remembered for his work in recreationat math-

ematics. The most famous of his contributions in this area is the well-known tower of Hanoi problem.
A freak accident led to Lucas’s death. He was gashed in the cheek by a piece of a plate which was
accidentally dropped at a banquet. An infection in the resulting wound killed him several days later.

DERRICK H. LEHMER (1905-1991) was born in Berkeley, California. He
received his undergraduate degree in 1927 from the University of California and
his master’s and doctorate degrees from Brown University in 1929 and 193¢,
respectively. He served on the staffs of the California Institute of Technology,
the Institute for Advanced Study, Lehigh University, and Cambridge University
before joining the mathematics department at the University of Califomnia,
Berkeley, in 1940, Lehmer made many contributions to number theory. He
invented many special purpose devices for number theoretic computations,
some with his father, who was also a mathematician. Lehmer was the thesis advisor of Harold Starlk,
who in tumn was the thesis advisor of the author of this book.
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The proof of the Lucas-Lehmer test may be found in [1.e80] and [Si64]. We give an
example to illustrate how the Lucas-Lehmer test is used.

Example 7.14. Consider the Mersenne number Ms=2% - ] =31, Then r =4,
ry =42 — 2 = 14 (mod 31), r3=142 — 2 = § (mod 31), and rs=8 —2=0 (mod 31).
Because ry = () (mod 31), we conclude that Ms = 311is prime. <

The Lucas-Lehmer test can be performed quite rapidly, as the following corollary
states. It lets us test whether Mersenne numbers are prime without factoring them and
makes it possible to determine whether extremely large Mersenne numbers are prime,
whereas other numbers of similar size that are not of special form are beyond testing.

Corollary 7.13.2. Let P be prime and let M, =127 — | denote the pth Mersenne
number. It is possible to determine whether M » is prime using O (p?) bit operaticns.

Proof.  To determine whether M p 18 prime using the Lucas-Lehmer test requires p — 1
squarings modulo M p»ach requiring O ((log M JD)2) = O(p?) bit operations. Hence, the
Lucas-Lehmer test requires 0 (P bit operations. =

It has been conjectured but not proved that there are infinitely many Mersenne
primes. However, the search for larger and larger Mersenne primes has been quite
successful.

‘The Search for Mersenne Primes

The history of the search for Mersenne primes can be divided into the eras before and after
the advent of computers. In precomputer days, the search was littered with errors and
unsubstantiated claims, many turning out to be false. By 1588, Pietro Cataldi had verified
that M7 and M9 were primes, but he also stated, without any justification, that M » was
prime for p = 23,29, 31, and 37 (of these, only M, is prime). In his Cogitata Physica-
Mathematica, published in 1644, Mersenne claimed (without providing a Justification)
that M, is prime for p=2, 3,5, 7, 13, 17, 19, 31, 67, 127, and 257, and for no other
prime p with p < 257, In 1772, Euler showed that M3 was prime, using trial division by
all primes up to 46,337, which is the largest prime not exceeding the square root of My,
In 1811, the English mathematician Peter Barlow wrote in his Theory of Numbers that
My would be the greatest Mersenne prime ever found—he thought that no one would
ever attempt to find a larger Mersenne prime because they are “merely curions, without
being useful.” This turned out to be a terrible prediction; not only was Barlow wrong
about people finding new Mersenne primes, but he was wrong about their uiility, as our
subsequent comments will show. :

In 1876, Lucas used the test that he had developed to show that M; was Compos-
ite without finding a factorization; it took an additional 27 years for M7 to be factored.
The American mathematician Frank Cole devoted 20 years of Sunday-afternoon compu-
tations to discover that Mgz = 193,707,721 - 761,838,257 ,287. When he presented this
result at 2 meeting of the American Mathematica] Society in 1903, writing the factoriza-
tion on a blackboard and not saying a word, the audience gave him a standing ovation, as
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they understood how much work had been required to find this factorization. The num-
bers Mg(, Mgg, Moz, and M o7 were shown to be prime between 1876 and 1914, But
it was not until 1947 that the primality of M, for all primes p not exceeding 257 was
tested, with the help of mechanical calculating machines. When this work was done, it
was seen that M